Khác biệt giữa bản sửa đổi của “Lưới (toán học)”

không có tóm lược sửa đổi
Không có tóm lược sửa đổi
Trong [[toán học]], cụ thể là trong [[tô pô đại cương]] và các ngành liên quan, '''lưới''' hay còn gọi là '''dãy Moore-Smith''' là một khái niệm mở rộng của [[dãy (toán học)|dãy]]. Về bản chất, một dãy là một [[hàm số]] với [[tập xác định]] [[số tự nhiên]], và trong [[tô pô]] thì tập đích của hàm này thường là nằm trong không gian tô pô bất kỳ. Tuy nhiên, trong tô pô học, các dãy không hoàn toàn mã hóa tất cả các thông tin về hàm giữa các không gian tôpô. Đặc biệt, hai điều kiện sau đây là không hoàn toàn tương đương cho một [[ánh xạ]] ''f'' giữa 2 không gian tô pô ''X'' và ''Y'':
:#Ánh xạ ''f'' [[hàm liên tục|liên tục]].
:#Lấy bất kỳ điểm ''x'' trong ''X'', và bất kỳ dãy nào trong ''X'' để hội tụ thành ''x'', thì ảnh của ''f'' với chuỗi này hội tụ tại ''f(x)''.
Điều kiện 1 chứa cả điều kiện 2.
 
Các khái niệm về lưới được [[E. H. Moore]] và [[H. L. Smith]] giới thiệu lần đầu tiên vào năm 1922,<ref>{{Cite journal | doi = 10.2307/2370388 | last1 = Moore | first1 = E. H. | last2 = Smith | first2 = H. L. | author1-link = E. H. Moore | author2-link = Herman L. Smith | year = 1922 | title = A General Theory of Limits | journal = American Journal of Mathematics | volume = 44 | issue = 2 | pages = 102&ndash;121 | ref = harv | postscript = <!-- Bot inserted parameter. Either remove it; or change its value to "." for the cite to end in a ".", as necessary. -->{{inconsistent citations}} | jstor = 2370388}}</ref> khái quát hóa các khái niệm về một dãy để xác nhận sự tương đương của các điều kiện (với "dãy" được thay thế bằng "lưới" trong điều kiện 2). Đặc biệt, lưới được định nghĩa trên bất kỳ một tập hữu hướng tùy ý chứ không phải chỉ xác định trên một tập số tuyến tính. Thuật ngữ "lưới" được đặt bởi Kelley.<ref name="coinage">{{harv|Sundström|2010|p=16n}}</ref><ref>Megginson, p.143</ref>
 
==Lưới trong không gian Tôpô==
''Lưới'' là một [[ánh xạ]] đi từ một [[tập được định hướng]] vào trong một [[không gian (toán học)|không gian]]. Nói cách khác, một lưới trên không gian <math>X</math> (với tập chỉ số là tập được định hướng <math>I</math>) là một ánh xạ <math>x: I \longrightarrow X</math>. Ta viết <math>x_i=x(i)</math> và ký hiệu lưới <math>(x_i)_{i\in I} </math>. Ký hiệu <math>\{ x_i \}_i \in I </math> cũng thường được sử dụng.
===Ví dụ===
* Những lưới có tập chỉ số <math>I= \mathbb{N}</math> với thứ tự thông thường là một dãy.
 
==Chú thích==
{{reflist}}
*{{cite book | last = Kelley | first = John L. | authorlink=John L. Kelley | title=General Topology | publisher= Springer | year=1991 | isbn=3-540-90125-6}}
*{{cite book | last = Wilard | first = Stephen | title=General Topology | publisher= Dover Publications | year=2004 | isbn=0-486-43479-6 }}
* {{cite arXiv |last=Sundström |first=Manya Raman | eprint=1006.4131 |title= A pedagogical history of compactness |class=math.HO |year=2010 |version=v1 |accessdate=November 18, 2010 | ref=harv}}
*{{cite book | last1 = Aliprantis | first1 = Charalambos D. | authorlink1 = Charalambos D. Aliprantis |last2=Border|first2=Kim C.| title=Infinite dimensional analysis: A hitchhiker's guide |edition=Third |publisher=Springer |location=Berlin |year=2006 |pages=xxii+703 pp. |isbn=978-3-540-32696-0, 3-540-32696-0 | mr=2378491 }}
* {{cite book
| last = Beer
| first = Gerald
| title = Topologies on closed and closed convex sets
| series = Mathematics and its Applications 268
| publisher = Kluwer Academic Publishers Group
| location = Dordrecht
| year = 1993
| isbn = 0-7923-2531-1
| pages = xii+340
| mr=1269778}}
*{{cite book | last = Megginson | first=Robert E. | title=An Introduction to Banach Space Theory | publisher=Springer | location = New York | year=1998 | isbn=0-387-98431-3 |series=[[Graduate Texts in Mathematics]] |volume=193 }}
*{{cite book | last = Schechter | first=Eric | authorlink=Eric Schechter| title=Handbook of Analysis and its Foundations | publisher=Academic Press | location = San Diego | year=1997 | isbn=126227608 }}
{{sơ khai toán học}}
[[Thể loại:Tô pô học]]