Khác biệt giữa các bản “Số nguyên tố chính quy”

không có tóm lược sửa đổi
(Trang mới: Trong toán học đây là một lạoi số nguyên tố do Ernst Kummer đặt ra. Một số nguyên tố ''p'' được gọi là chính quy nếu không tồn tại b...)
 
Trong [[toán học]] đây là một lạoi [[số nguyên tố]] do [[Ernst Kummer]] đặt ra. Một số nguyên tố ''p'' được gọi là chính quy nếu không tồn tại bất cứ một [[tử số]] nào của [[số Bernoulli]] ''B''<sub>''k''</sub> (khi ''k''&nbsp;=&nbsp;2,&nbsp;4,&nbsp;6,&nbsp;&hellip;,&nbsp;''p''&nbsp;&minus;&nbsp;3.) chia hết cho ''p''. Một vài số nguyên tố chính quy nhỏ nhất là: :[[3 (số)|3]], [[5 (số)|5]], [[7 (số)|7]], [[11 (số)|11]], [[13 (số)|13]], [[17 (số)|17]], [[19 (số)|19]], [[23 (số)|23]], [[29 (số)|29]], [[31 (số)|31]], [[41 (số)|41]], … {{OEIS|id=A007703}}.
 
Nó đã được [[giả thuyết]] là có [[vô hạn|vô hạn]] số nguyên tố chính quy. Một giả thuyết khác của nhà toán học (Siegel, 1964) rằng ''[[Số e (mathematical constant)|e]]''<sup><small>&minus;1/2</small></sup>, hay khoảng 61% các số nguyên tố là chính quy. Cả 2 giả thuyết này vẫn chưa có ai chứng minh được cho đến [[2008]].
 
Trong lịch sử Ernst Kummer đã tìm ra loại số này khi đang cố gắng chứng minh [[định lý lớn Fermat]] là đúng với số mũ là các số này (và các số mũ là tích của các số này)
334

lần sửa đổi