Khác biệt giữa các bản “Đồng luân”

n (→‎Tham khảo: clean up, replaced: {{tham khảo}} → {{tham khảo|2}})
* Nhắc lại về đường đi trong không gian <math>X</math> là ánh xạ liên tục <math>\alpha</math> từ khoảng <math>[0,1]</math> trong tô pô Euclid vào <math>X</math>. Điểm <math>\alpha (0)</math> được gọi là điểm đầu và điểm <math>\alpha (1)</math> được gọi là điểm kết thúc.<ref name = "hqvu">- [TS. Huỳnh Quang Vũ| [http://www.math.hcmus.edu.vn/~hqvu/teaching/n.pdf]| Giáo trình Tô Pô | | 2012-2013| Chương 15 - Trang 73 ]</ref>
* Đặt <math>\alpha</math> và <math>\beta</math> là hai đường từ <math>a</math> sang <math>b</math> trong <math>X</math>. Một phép '''đồng luân''' từ <math>\alpha</math> và <math>\beta</math> là họ các ánh xạ: <math>F_t: X\rarr X, t\in [0,1]</math>, như vậy ánh xạ <math>(t,s)\rarr F_t(s)</math> là liên tục, <math>F_0=\alpha, F_1=\beta</math>, và với mọi điểm <math>t</math> đường <math>F_t</math> đi từ <math>a \rarr b</math>.<ref name = "hqvu"/>
* Nếu có một phép đồng luân từ <math>\alpha \rarr \beta</math> chúng ta nói rằng <math>\alpha</math> '''đồng luân với''' <math>\beta</math>, thường kí hiệu là <math>\alpha</math> ~ <math>\beta</math>.<ref name = "hqvu"/>
* Một vòng hay một đường đi đóng tại <math>a \in X </math> là một đường mà điểm đầu và điểm cuối của nó là <math>a</math>. Nói cách khác, nó là một [[Liên tục trong không gian Tô pô|ánh xạ liên tục]] <math>\alpha: [0,1] \rarr X</math> sao cho <math>\alpha (0) = \alpha (1) =\alpha </math>. Vòng bất biến là vòng mà <math>\alpha (t)</math> =<math>\alpha </math> với mọi <math>t\in[0,1]</math>.<ref name = "hqvu"/>
* Một không gian được gọi là [[đơn liên]] nếu nó [[liên thông đường]] và bất kì vòng là đồng phôi với một [[vòng bất biến]].<ref name = "hqvu"/>
Người dùng vô danh