Khác biệt giữa bản sửa đổi của “Mômen lưỡng cực điện”

Nội dung được xóa Nội dung được thêm vào
Helolo (thảo luận | đóng góp)
Không có tóm lược sửa đổi
Dòng 73:
 
==Tham khảo==
{{tham khảo}}
Raymond A. Serway, John W. Jewett, Jr. (2009). Physics for Scientists and Engineers, Volume 2 (8th ed.). Cengage Learning. p. 756. ISBN 1439048398.
Jump up ^ Christopher J. Cramer (2004). Essentials of computational chemistry (2 ed.). Wiley. p. 307. ISBN 0-470-09182-7.
Jump up ^ David E Dugdale (1993). Essentials of Electromagnetism. Springer. pp. 80–81. ISBN 1-56396-253-5.
Jump up ^ Kikuji Hirose, Tomoya Ono, Yoshitaka Fujimoto (2005). First-principles calculations in real-space formalism. Imperial College Press. p. 18. ISBN 1-86094-512-0.
Jump up ^ Each succeeding term provides a more detailed view of the distribution of charge, and falls off more rapidly with distance. For example, the quadrupole moment is the basis for the next term: Q_{ij} = \int d^3 \mathbf{r}_0 \left( 3x_i x_j -r_0^2 \delta_{ij} \right) \rho( \mathbf{r}_0) \ , with r0 = (x1, x2, x3). See HW Wyld (1999). Mathematical Methods for Physics. Westview Press. p. 106. ISBN 0-7382-0125-1.
^ Jump up to: a b BB Laud (1987). Electromagnetics (2 ed.). New Age International. p. 25. ISBN 0-85226-499-2.
Jump up ^ Jie-Zhi Wu, Hui-Yang Ma, Ming-De Zhou (2006). "§2.3.1 Functionally Orthogonal Decomposition". Vorticity and vortex dynamics. Springer. pp. 36 ff. ISBN 3-540-29027-3.
Jump up ^ For example, one could place the boundary around the bound charges at infinity. Then φb falls off with distance from the bound charges. If an external field is present, and zero free charge, the field can be accounted for in the contribution of φf, which would arrange to satisfy the boundary conditions and Laplace's equation
\nabla^2 \varphi_f = 0 \ .
Jump up ^ In principle, one could add the same arbitrary curl to both D and P, which would cancel out of the difference D − P. However, assuming D and P originate in a simple division of charges into free and bound, they a formally similar to electric fields and so have zero curl.
Jump up ^ This medium can be seen as an idealization growing from the multipole expansion of the potential of an arbitrarily complex charge distribution, truncation of the expansion, and the forcing of the truncated form to apply everywhere. The result is a hypothetical medium. See Jack Vanderlinde (2004). "§7.1 The electric field due to a polarized dielectric". Classical Electromagnetic Theory. Springer. ISBN 1-4020-2699-4.
Jump up ^ Uwe Krey, Anthony Owen (2007). Basic Theoretical Physics: A Concise Overview. Springer. pp. 138–143. ISBN 3-540-36804-3.
Jump up ^ T Tsang (1997). Classical Electrodynamics. World Scientific. p. 59. ISBN 981-02-3041-9.
Jump up ^ For example, for a system of ideal dipoles with dipole moment p confined within some closed surface, the dipole density p(r) is equal to p inside the surface, but is zero outside. That is, the dipole density includes a Heaviside step function locating the dipoles inside the surface.
Jump up ^ George E Owen (2003). Introduction to Electromagnetic Theory (republication of the 1963 Allyn & Bacon ed.). Courier Dover Publications. p. 80. ISBN 0-486-42830-3.
Jump up ^ Pierre-François Brevet (1997). Surface second harmonic generation. Presses polytechniques et universitaires romandes. p. 24. ISBN 2-88074-345-1.
Jump up ^ See Daniel A. Jelski, Thomas F. George (1999). Computational studies of new materials. World Scientific. p. 219. ISBN 981-02-3325-6. and EM Purcell & CR Pennypacker (1973). "Scattering and Absorption of Light by Nonspherical Dielectric Grains". Astrophysical Journal 186: 705–714. Bibcode:1973ApJ...186..705P. doi:10.1086/152538.
Jump up ^ A brute force evaluation of the integral can be done using a multipole expansion: \frac{1}{|\bold{r-r_0}|}  = 
 
\sum_{\ell,\ m } \frac{4\pi}{2 \ell +1}•
 
\frac {1}{r} \left({\frac {r_0}{r}}\right)^{\ell} •
\ {Y^*}_{\ell}^m (\theta_0 , \ \phi_0) Y_{\ell}^m (\theta, \ \phi)
 
. See HW Wyld (1999). Mathematical Methods for Physics. Westview Press. p. 104. ISBN 0-7382-0125-1.
^ Jump up to: a b H. Ibach, Hans Lüth (2003). Solid-state Physics: an introduction to principles of materials science (3 ed.). Springer. p. 361. ISBN 3-540-43870-X.
Jump up ^ Yasuaki Masumoto, Toshihide Takagahara (2002). Semiconductor quantum dots: physics, spectroscopy, and applications. Springer. p. 72. ISBN 3-540-42805-4.
^ Jump up to: a b Yutaka Toyozawa (2003). Optical processes in solids. Cambridge University Press. p. 96. ISBN 0-521-55605-8.
Jump up ^ For example, a droplet in a surrounding medium experiences a higher or a lower internal field depending upon whether the medium has a higher or a lower dielectric constant than that of the droplet. See Paul S. Drzaic (1995). Liquid crystal dispersions. World Scientific. p. 246. ISBN 981-02-1745-5.
Jump up ^ Wai-Kai Chen (2005). The electrical engineering handbook. Academic Press. p. 502. ISBN 0-12-170960-4.
Jump up ^ Julius Adams Stratton (2007). Electromagnetic theory (reprint of 1941 ed.). Wiley-IEEE. p. 184. ISBN 0-470-13153-5.
Jump up ^ Edward J. Rothwell, Michael J. Cloud (2001). Electromagnetics. CRC Press. p. 68. ISBN 0-8493-1397-X.
Jump up ^ Based upon equations from Andrew Gray (1888). The theory and practice of absolute measurements in electricity and magnetism. Macmillan & Co. pp. 126–127., which refers to papers by Sir W. Thomson.
Jump up ^ HW Wyld (1999). Mathematical Methods for Physics (2 ed.). Westview Press. pp. 233 ff. ISBN 0-7382-0125-1.
Jump up ^ Julius Adams Stratton (2007). Electromagnetic theory (Wiley-IEEE reissue ed.). Piscataway, NJ: IEEE Press. p. 205 ff. ISBN 0-470-13153-5.
Jump up ^ John E Swipe & RW Boyd (2002). "Nanocomposite materials for nonlinear optics based upon local field effects". In Vladimir M. Shalaev. Optical properties of nanostructured random media. Springer. p. 3. ISBN 3-540-42031-2.
Jump up ^ Emil Wolf (1977). Progress in Optics. Elsevier. p. 288. ISBN 0-7204-1515-2.
Jump up ^ Mark Fox (2006). Optical Properties of Solids. Oxford University Press. p. 39. ISBN 0-19-850612-0.
Jump up ^ Lev Kantorovich (2004). "§8.2.1 The local field". Quantum theory of the solid state. Springer. p. 426. ISBN 1-4020-2153-4.
Jump up ^ Pierre Meystre (2001). Atom Optics. Springer. p. 5. ISBN 0-387-95274-8.
Jump up ^ Bruce T Draine (2001). "The discrete dipole approximation for light scattering by irregular targets". In Michael I. Mishchenko. Light scattering by nonspherical particles. Academic Press. p. 132. ISBN 0-12-498660-9.
Jump up ^ MA Yurkin & AG Hoekstra (2007). "The discrete dipole approximation: an overview and recent developments". Journal of Quantitative Spectroscopy and Radiative Transfer 106 (1-3): 558–589. arXiv:0704.0038. Bibcode:2007JQSRT.106..558Y. doi:10.1016/j.jqsrt.2007.01.034.
Jump up ^ Ojeda, P., Garcia, M. (2010). "Electric Field-Driven Disruption of a Native beta-Sheet Protein Conformation and Generation of a Helix-Structure". Biophysical Journal 99 (2): 595–599. Bibcode:2010BpJ....99..595O. doi:10.1016/j.bpj.2010.04.040. PMC 2905109. PMID 20643079.
Jump up ^ Y. Shim and H. Kim (2008). "Dielectric Relaxation, Ion Conductivity, Solvent Rotation, and Solvation Dynamics in a Room-Temperature Ionic Liquid". J. Phys. Chem. B 112 (35): 11028–11038. doi:10.1021/jp802595r. PMID 18693693.
Jump up ^ K. Müller, L. Mokrushina and W. Arlt (2012). "Second-Order Group Contribution Method for the Determination of the Dipole Moment". J. Chem. Eng. Data 57 (4): 1231–1236. doi:10.1021/je2013395.
 
==Liên kết ngoài==