Khác biệt giữa bản sửa đổi của “Bội số chung nhỏ nhất”

Nội dung được xóa Nội dung được thêm vào
Trang mới: “{{subst:đang dịch}} Trong số học, '''bội số chung nhất nhất''' (hay còn gọi tắt là '''bội chung nhỏ nhất''', viết tắt là '''BCNN''', ...”
(Không có sự khác biệt)

Phiên bản lúc 19:45, ngày 19 tháng 10 năm 2009

Trong số học, bội số chung nhất nhất (hay còn gọi tắt là bội chung nhỏ nhất, viết tắt là BCNN, tiếng Anh: least common multiple hoặc lowest common multiple (lcm) hoặc smallest common multiple) arithmetic and number theory, của hai số nguyên a và b là số nguyên dương nhỏ nhất chia hết cho cả ab. Tức là nó có thể chia cho ab mà không để lại số dư. nếu a hoặc b là 0, thì không tồn tại số nguyên dương chia hết cho a và b, khi đó quy ước rằng lcm(ab) là 0.

Định nghĩa trên đôi khi được tổng quá hoát cho hơn hai số nguyên dương: Bội chung nhỏ nhất của a1, ..., an là số nguyên dương nhỏ nhất là bội số của a1, ..., an.

Ví dụ

Bội của 4 là:

4,8,12,16,20,24,28,32,36,40,44.........

(thêm 4 để được bội số tiếp theo).

Bội của 6 là:

6, 12, 18, 24, 30, 36, 42, 48, 54, 60, 66, 72, 78, ...

(thêm 6 để được bội số tiếp theo).

Bội chung của 4 và 6 là các số cùng xuất hiện trong hai dãy trên:

12, 24, 36, 48, ....

Vậy bội chung nhỏ nhất của 4 và 6 là 12.

Ứng dụng

Khi cộng, trừ hoặc so sánh các phân số, nó đặc biệt có ích khi tìm bội số chung của mẫu, thường gọi là mẫu số chung nhỏ nhất (hay mẩu chung nhỏ nhất).

 

mẫu số 42 được sử dụng bởi vì nó là bội chung nhỏ nhất của 21 và 6.

Tính bội số chung nhỏ nhất

Reduction by the greatest common divisor

The following formula reduces the problem of computing the least common multiple to the problem of computing the greatest common divisor (GCD):

 

There are fast algorithms for computing the GCD that do not require the numbers to be factored, such as the Euclidean algorithm. To return to the example above,

 

Because gcd(a, b) is a divisor of both a and b, it's more efficient to compute the LCM by dividing before multiplying:

 

This reduces the size of one input for both the division and the multiplication, and reduces the required storage needed for intermediate results. Done this way, the previous example becomes:

 

Finding least common multiples by prime factorization

The unique factorization theorem says that every positive integer greater than 1 can be written in only one way as a product of prime numbers. The prime numbers can be considered as the atomic elements which, when combined together, make up a composite number.

For example:

 

Here we have the composite number 90 made up of one atom of the prime number 2, two atoms of the prime number 3 and one atom of the prime number 5.

This knowledge can be used to find the lcm of a set of numbers.

Example: Find the value of lcm(8,9,21).

First, factor out each number and express it as a product of prime number powers.

 
 
 

The lcm will be the product of multiplying the highest power in each prime factor category together. Out of the 4 prime factor categories 2, 3, 5, and 7, the highest powers from each are 23, 32, 50, and 71. Thus,

 

This method is not as efficient as reducing to the greatest common divisor, since there is no known general efficient algorithm for integer factorization, but is useful in illustrating concepts.

This method can be illustrated using a Venn diagram as follows. Find the prime factorization of each of the two numbers. Put the prime factors into a Venn diagram with one circle for each of the two numbers, and all factors they share in common in the intersection. To find the LCM, just multiply all of the prime numbers in the diagram.

Here is an example:

48 = 2 × 2 × 2 × 2 × 3,
180 = 2 × 2 × 3 × 3 × 5,

and what they share in common is two "2"s and a "3":

 
Least common multiple = 2 × 2 × 2 × 2 × 3 × 3 × 5 = 720
Greatest common divisor = 2 × 2 × 3 = 12

This also works for the greatest common divisor (GCD), except that instead of multiplying all of the numbers in the Venn diagram, one multiplies only the prime factors that are in the intersection. Thus the GCD of 48 and 180 is 2 × 2 × 3 = 12.

An algorithm-based method

This method works as easily for finding the LCM of several integers.

Let there be a finite sequence of positive integers X = (x1, x2, ..., xn), n > 1. The algorithm proceeds in steps as follows: on each step m it examines and updates the sequence X(m) = (x1(m), x2(m), ..., xn(m)), X(1) = X. The purpose of the examination is to pick up the least (perhaps, one of many) element of the sequence X(m). Assuming xk0(m) is the selected element, the sequence X(m+1) is defined as

xk(m+1) = xk(m), kk0
xk0(m+1) = xk0(m) + xk0.

In other words, the least element is increased by the corresponding x whereas the rest of the elements pass from X(m) to X(m+1) unchanged.

The algorithm stops when all elements in sequence X(m) are equal. Their common value L is exactly LCM(X). (For a proof and an interactive simulation see reference below, Algorithm for Computing the LCM.)

A method using a table

This method works for any number of factors. You begin by listing all of the numbers vertically in a table like this (We can try 4, 7, 12, 21, and 42):

4
7
12
21
42

The process begins by dividing all of the factors by 2. If any of them divide evenly, write 2 at the top of the table and the result of division by 2 of each factor in the space to the right of each factor and below the 2. If they do not divide evenly, just rewrite the number again. If 2 does not divide evenly into any of the numbers, try 3.

x 2
4 2
7 7
12 6
21 21
42 21

Now, check if 2 divides again

x 2 2
4 2 1
7 7 7
12 6 3
21 21 21
42 21 21

Once 2 no longer divides, divide by 3. If 3 no longer divides, try 5 and 7. keep going until all of the numbers have been reduced to 1.

x 2 2 3 7
4 2 1 1 1
7 7 7 7 1
12 6 3 1 1
21 21 21 7 1
42 21 21 7 1

Now, multiply the numbers on the top and you have the LCM. In this case, it is 2 × 2 × 3 × 7 = 84. This is a variation on Euclid's algorithm, as common factors are essentially divided out along the way of dividing all of the numbers at once by each successive factor. You will get to the LCM the quickest if you use prime numbers and start from the lowest prime, 2.

The LCM in commutative rings

The least common multiple can be defined generally over commutative rings as follows: Let a and b be elements of a commutative ring R. A common multiple of a and b is an element m of R such that both a and b divide m (i.e. there exist elements x and y of R such that ax = m and by = m). A least common multiple of a and b is a common multiple that is minimal in the sense that for any other common multiple n of a and b, m divides n.

In general, two elements in a commutative ring can have no least common multiple or more than one. However, any two least common multiples of the same pair of elements are associates. In a unique factorization domain, any two elements have a least common multiple. In a principal ideal domain, the least common multiple of a and b can be characterised as a generator of the intersection of the ideals generated by a and b (the intersection of a collection of ideals is always an ideal). In principal ideal domains, one can even talk about the least common multiple of arbitrary collections of elements: it is a generator of the intersection of the ideals generated by the elements of the collection.

See also

External links