Khác biệt giữa các bản “Phân tích dữ liệu (Analytics)”

n
''Phân tích các loại dữ liệu phi cấu trúc'' là một thách thức khác đang thu hút sự chú ý. Dữ liệu phi cấu trúc khác với dữ liệu có cấu trúc ở chỗ định dạng của nó biến đổi đa dạng và không thể lưu trữ được trong các cơ sở dữ liệu quan hệ thông thường nếu không có sự nỗ lực lớn trong việc chuyển hóa dữ liệu. Các nguồn dữ liệu phi cấu trúc, như thư điện tử, nội dung văn bản, PDFs, không gian địa lý dữ liệu,... đang trở thành nguồn phù hợp cho phân tích kinh doanh (business intelligence) của các doanh nghiệp, chính phủ và trường đại học. Ví dụ, ở Anh một phát hiện ra một công ty buôn bán trái phép ghi chú gian lận của bác sĩ để tiếp tay cho nhân viên gian lận với chủ doanh nghiệp và công ty bảo hiểm của họ đã giúp các công ty bảo hiểm nâng cao cảnh giác cho việc phân tích dữ liệu phi cấu trúc. Viện nghiên cứu toàn cầu của McKinsey ước tính việc phân tích dữ liệu lớn có thể giúp hệ thống y tế của nước Mỹ tiết kiệm được khoảng 300 tỷ USD mỗi năm và khu vực công châu Âu khoảng 250 tỷ Euro mỗi năm.
 
Những thách thức đang là động lực cho việc đổi mởimới hệ thống thông tin phân tích dữ liệu hiện đại, cho ra đời nhiều khái niệm phân tích máy mới như xử lý sự kiện phức tạp (complex event processing), tìm kiếm và phân tích văn bản toàn bộ, và nhiều ý tưởng mới về cách thức trình bày. Một trong những đổi mới đó là mở đầu của kiến trúc dạng lưới trong phân tích máy, cho phép tăng tốc độ khả năng xử lý song song ồ ạt bằng cách phân phối khối lượng công việc cho nhiều máy tính với quyền truy cập bình đẳng tới toàn bộ tập dữ liệu.
 
Phân tích dữ liệu đang được sử dụng ngày càng nhiều trong giáo dục, đặc biệt ở các văn phòng cấp huyện và trung ương. Mặc dù vậy, mức độ phức tạp trong việc theo dõi kết quả của học sinh đưa ra những thách thức khi các nhà giáo dục cố gắng hiểu và sử dụng phân tích dữ liệu để phân biệt các kiểu mẫu kết quả, dự báo khả năng tốt nghiệp, nâng khả năng thành công của học sinh...Ví dụ, trong một nghiên cứu của các quận mạnh về sử dụng dữ liệu, 48% giáo viên gặp phải khó khăn trong việc đưa ra câu hỏi được thúc đẩy bằng dữ liệu, 36% không hiểu dữ liệu được cung cấp, và 52% hiểu và dịch sai về dữ liệu. Để đối phó với vấn đề này, một vài công cụ phân tích dữ liệu cho các nhà giáo dục tuân theo định dạng dữ liệu trực tiếp (nhúng nhãn, tài liệu ghi chép bổ sung, và một hệ thống trợ giúp, tạo ra hiện thị và các quyết định nội dung quan trọng) để cải thiện hiểu biết và khả năng sử dụng công cụ phân tích được hiển thị của các nhà giáo dục.
48

lần sửa đổi