Khác biệt giữa bản sửa đổi của “Động lực học chất lưu”

Nội dung được xóa Nội dung được thêm vào
Không có tóm lược sửa đổi
Dòng 1:
{{Cơ học môi trường liên tục|fluid}}
[[Tập_tinTập tin:Teardrop_shapeTeardrop shape.svg|nhỏ|300x300px|Một hình dạng đặc trưng trong khí động học, giả định một môi trường nhớt từ trái qua phải, biểu đồ thể hiện phân bố áp suất như trên đường viền màu đen (độ dày của đường màu đen lớn đồng nghĩa với áp suất lớn và ngược lại), và vận tốc trong lớp biên bằng các tam giác màu tím. Các thiết bị tạo xoáy màu xanh thúc đẩy quá trình quá độ lên dòng chảy rối và ngăn cản dòng chảy ngược (sự phân chia dòng chảy) từ vùng có áp suất cao ở phía sau. Bề mặt trước rất trơn nhẵn, thậm chí giống như da cá mập, bởi vì nếu dòng không khí bị rối ở đây sẽ làm giảm năng lượng của nó. Phần đuôi cụt phía sau (còn được gọi là [[Kammback]]) cũng ngăn cản dòng chảy ngược từ vùng áp suất cao phía sau xuyên qua các tấm lái ngang đến vùng hội tụ ở phái trước. ]]Trong [[vật lý học]], động lực học chất lưu là một nhánh của cơ học chất lưu, giải quyết các vấn đề của dòng chảy chất lưu – [[khoa học tự nhiên]] về  chuyển động chất lưu (chất lỏng và các chất khí). '''Động lực học chất lưu''' cũng có vài nhánh nhỏ bao gồm: [[Khí động lực học]] (nghiên cứu chuyển đông của không khí và các chất khí khác) và '''Thủy động lực học''' (nghiên cứu chuyển động của chất lỏng). Động lực học chất lưu có rất nhiều ứng dụng như tính toán lực và mô men trên khí cụ bay, xác định lưu lượng khối lượng của xăng dầu trong các đường ống, dự đoán các mô hình thời tiết, giải thích tinh vân giữa các vì sao và mô hình hóa các vụ nổ vũ khí phân hạch. Một số nguyên tắc của nó thậm chí còn được sử dụng trong kỹ thuật giao thông trong đó chuyển động giao thông được coi như là chuyển động của một chất lỏng liên tục.
 
Động lực học chất lưu cung cấp một cấu trúc có tính hệ thống – làm nền tảng cho các môn học thực hành nói trên - bao hàm các định luật thực nghiệm và bán thực nghiệm xuất phát từ việc đo lưu lượng và được sử dụng để giải quyết các vấn đề thực tế. Các giải pháp cho một vấn đề động lực học chất lưu thường liên quan đến việc tính toán các đặc tính khác nhau của chất lưu, chẳng hạn như vận tốc dòng chảy, áp suất, khối lượng riêng và nhiệt độ, như là các hàm của không gian và thời gian.
Dòng 45:
 
===Chất lưu Không nhớt, chất lưu Newton và phi Newton===
[[Tập_tinTập tin:Flow around a wing.gif|nhỏ|Dòng chảy tiềm năng xung quanh một vật thể dạng cánh máy bay]]Tất cả các chất lưu đều có tính nhớt, có nghĩa là chúng có khả năng chống biến dạng: các khối chất lưu cạnh nhau di chuyển với các vận tốc khác nhau tác dụng lực nhớt vào nhau. Gradient vận tốc được xem như là tốc độ biến dạng; nó có đơn vị là '''''T<sup>−1</sup>'''''. Isaac Newton cho rằng đối với nhiều chất lưu quen thuộc như nước và không khí, ứng suất gây da bởi những lực nhớt này có quan hệ tuyến tính với tốc độ biến dạng. Các chất lưu như vậy được gọi là chất lưu Newton. Hệ số tỉ lệ được gọi là độ nhớt của chất lưu; đối với chất lưu Newton, độ nhớt là một thuộc tính không phụ thuộc vào tốc độ biến dạng.
 
Chất lưu phi Newton có mối quan hệ ứng suất biến dạng phi tuyến tính phức tạp hơn. Các ngành nghiên cứu nhỏ của lưu biến học (rheology) nghiên cứu mối quan hệ giữa ứng suất và biến dạng của các chất lưu này, trong đó bao gồm nhũ tương (emulsion) và chất bùn (slurries), vật liệu nhớt đàn hồi như máu và một số hợp chất cao phân tử (polymers), và các chất lỏng dính như nhựa mủ (cao su), mật ong và dầu nhờn.{{citation needed|date=June 2015}}
Dòng 60:
 
===Dòng chảy ổn định và dòng chảy không ổn định===
[[Tập_tinTập tin:HD-Rayleigh-Taylor.gif|nhỏ|320px|Mô hình thủy động lực học nghiên cứu mất ổn định [[Rayleigh–Taylor instability]] <ref>Shengtai Li, Hui Li "Parallel AMR Code for Compressible MHD or HD Equations" (Los Alamos National Laboratory) [http://math.lanl.gov/Research/Highlights/amrmhd.shtml]</ref>]]Khi tất cả các đạo hàm thời gian của một trường dòng chảy biến mất, dòng chảy được gọi là dòng chảy ổn định (steady). Dòng chảy ở trạng thái ổn định có nghĩa là các thuộc tính của chất lưu tại một điểm trong hệ thống không thay đổi theo thời gian. Ngược lại, dòng chảy được gọi là không ổn định (còn được gọi là dòng chảy tức thời (transient)<ref>[http://www.cfd-online.com/Forums/main/118306-transient-state-unsteady-state.html Transient state or unsteady state?]</ref>). Việc một dòng chảy cụ thể là ổn định hay không ổn định, có thể phụ thuộc vào việc lựa chọn hệ quy chiếu. Ví dụ, dòng chảy tầng trên một mặt cầu là ổn định trong hệ quy chiếu tĩnh so với khối cầu. Trong một hệ quy chiếu tĩnh so với dòng chảy thì dòng chảy là không ổn định.
 
Các dòng chảy rối là được định nghĩa là các dòng chảy không ổn định. Một dòng chảy rối có thể, tuy nhiên, ổn định về mặt thống kê. Theo Pope:<ref>See Pope (2000), page 75.</ref>{{quote|text=|sign=|source=|
Dòng 74:
Hầu hết các dòng chảy trong thực tế có số Reynolds quá cao vì vậy việc mô phỏng số trực tiếp DNS là một lựa chọn không khả thi, [8] thậm chí với sự tiến bộ của máy điện toán trong vài thập kỷ tới. Mọi phương tiện bay đủ lớn để có thể mang theo một con người (L> 3 m), di chuyển nhanh hơn 72&nbsp;km/h (20&nbsp;m/s) đều vượt quá xa giới hạn của mô phỏng DNS (Re = 4.000.000). Cánh máy bay vận tải (chẳng hạn Airbus A300 hoặc Boeing 747) có số Reynolds khoảng 40 triệu (dựa trên góc tấn). Việc tìm lời giải cho các dòng chảy thực tế này cần đến các mô hình dòng chảy rối trong tương lai gần. Các phương trình Navier-Stokes được trung bình bởi Reynolds (RANS) kết hợp với việc mô hình hóa dòng rối tạo ra một mô hình tác động của dòng chảy rối. Một mô hình như vậy sẽ cung cấp giá trị truyền động lượng bổ sung được tạo ra bởi các ứng suất Reynolds, mặc dù sự rối cũng làm tăng truyền nhiệt và khối lượng. Một phương pháp đầy hứa hẹn nữa đó là mô phỏng xoáy lớn (LES), và mô phỏng xoáy tách rời (DES) - một sự kết hợp của mô hình rối RANS và mô phỏng xoáy lớn LES.
 
===Dòng chảy dưới âm tốc, cậnngang âm tốc, vượttrên âm tốc, siêu âmthanh (subsonic,transonic, supersonic, tốchypersonic)===
Trong khi nhiều dòng chảy trên mặt đất (ví dụ dòng chảy của nước trong đường ống) diễn ra với các số Mach thấp, nhiều dòng chảy thực tế khác (ví dụ trong khí động học) diễn ra với số Mach cao M = 1 hoặc lớn hơn (các dòng siêu âm). Việc này kéo theo các hiện tượng khác (ví dụ như sóng xung kích của dòng vượt âm tốc, bất ổn định cận âm trong dòng chảy có M xấp xỉ 1, mất cân bằng hóa học do sự ion hóa trong các dòng siêu âm), do đó các chế độ dòng chảy này cần được xử lý theo các cách khác nhau.