Khác biệt giữa các bản “Không gian vectơ”

Không thay đổi kích thước ,  3 tháng trước
lỗi chính tả
(lỗi chính tả)
[[Không gian Euclide|Không gian Euclid]] là một ví dụ của không gian vector. Chúng đại diện cho các đại lượng vô hướng như là lực: Mọi lực (cùng loại) có thể cộng với nhau để thu được lực thứ 3, và phép nhân vector lực với một số thực có thể thu được một vector lực. Cùng với đó, nhưng theo một cách hình học hơn, vector đại diện cho sự thay thế của mặt phẳng trong mặt phẳng hoặc trong không gian 3 chiều cũng từ không gian vector. Vector trong không gian vector không cần thiết phải có một đại lượng dạng mũi tên như trong ví dụ của nó: vector được coi như là một đại lượng toán học với các tính chất cụ thể, đôi khi có thể mô tả một cách trực quan bằng một mũi tên.
 
Không gian vector là một phần trong đại số tuyến tính được quy định bởi số chiều của nó, nói một cách đại khái là số lượng các hướng độc lập trong không gian. Không gian vecotrvector vô hạn chiều xuất hiện tự nhiên trong toán phân tich, như là một không gian hàm, trong đó vector chính là các hàm. Những vector này được tổng quát với cấu trúc cộng thêm, được gọi là topology, cho phép xem xét các lỗi của tính địa phương và tính liên tục. topology được định nghĩa bởi norm hoặc tích vô hướng, được hiểu là có kí hiệu khoảng cách giữa các vector. Đây là trường hợp cụ thể của không gian Banach và không gian Hilbert, chúng là những khái niệm cơ bản trong toán học phân tích.
 
Các không gian [[vectơ]] quen thuộc là [[không gian Euclide|không gian Euclid]] hai chiều và ba chiều. Các vectơ trong các không gian này là các cặp [[số thực]] hay các bộ 3 số thực, có trật tự, và thường được biểu diễn như là một [[vectơ hình học]] với [[độ lớn]] và [[phương hướng]].
Người dùng vô danh