Khác biệt giữa các bản “Vectơ”

n
clean up, General fixes using AWB
Thẻ: Sửa đổi di động Sửa đổi qua ứng dụng di động Sửa đổi từ ứng dụng iOS
n (clean up, General fixes using AWB)
Trong [[toán học]], [[vật lý]], và [[kỹ thuật]], một '''vectơ''' ([[tiếng Anh]]: '''vector''' hay [[Hán-Việt]]: '''hướng lượng''') là một đoạn thẳng có hướng. Đoạn thẳng này biểu thị [[phương]], [[chiều]], [[độ lớn]] ([[chiều dài]] của vectơ). Ví dụ trong mặt phẳng cho hai điểm phân biệt A và B bất kì ta có thể xác định được vectơ <math>\overrightarrow{AB}</math> được mô tả như hình vẽ.
 
Một vectơ là những gì cần thiết để "mang" điểm A đến điểm B; từ vector trong tiếng Latin có nghĩa là "người vận chuyển".<ref>Latin: vectus, [[perfect participle]] of vehere, "to carry"/ ''veho'' = "I carry". For historical development of the word ''vector'', see {{OED|vector ''n.''}} and {{citechú thích web|author = Jeff Miller| url = http://jeff560.tripod.com/v.html | title = Earliest Known Uses of Some of the Words of Mathematics | accessdate = 2007-05-25}}</ref> Lần đầu tiên được sử dụng bởi các nhà thiên văn học thế kỷ 18 trong cuộc cách mạng khảo sát các hành tinh quay quanh Mặt trời.<ref>{{citechú thích booksách|title=The Oxford english dictionary.|year=2001|publisher=Claredon Press|location=London|isbn=9780195219425|edition=2nd.}}</ref> Độ lớn của vector là khoảng cách giữa 2 điểm và hướng dịch chuyển từ điểm A đến điểm B. Nhiều phép toán đại số trên các số thực như cộng, trừ, nhân và phủ định có sự tương tự gần gũi với vectơ, phép toán tuân theo các quy luật đại số quen thuộc của giao hoán, kết hợp và phân phối. một '''vector''' là một phần tử trong một [[không gian vectơ|không gian vector]], được xác định bởi ba yếu tố: điểm đầu (hay điểm gốc), hướng (gồm phương và chiều) và độ lớn (hay độ dài). Ví dụ, [[đoạn thẳng]] AB có [[điểm gốc]] là A, [[hướng (định hướng)|hướng]] từ A đến B được gọi là vector AB, ký hiệu là <math>\overrightarrow{A B}</math>. Vector được ký hiệu là <math>\overrightarrow{A B}</math> hoặc <math>\vec a</math>, <math>\vec b</math>, <math>\vec u</math>, <math>\vec v</math>.[[Tập tin:Vector AB from A to B.svg|nhỏ|250px|Vectơ hướng từ A đến B]]
 
Trong giải tích, một vectơ trong [[không gian Euclide|không gian Euclid]] '''R'''<sup>n</sup> là một bộ ''n'' [[số thực]] (''x''<sub>''1''</sub>, ''x''<sub>''2''</sub>,..., ''x''<sub>''n''</sub>).
 
 
Khái niệm về vectơ, như chúng ta biết ngày nay, đã phát triển dần dần trong khoảng thời gian hơn 200 năm. Khoảng một chục người đã bỏ nhiều công sức để đóng góp.<ref name="Crowe">Michael J. Crowe, [[A History of Vector Analysis]]; see also his {{citechú thích web |url=http://www.nku.edu/~curtin/crowe_oresme.pdf |title=lecture notes |accessdate=2010-09-04 |url-status=dead |archiveurl=https://web.archive.org/web/20040126161844/http://www.nku.edu/~curtin/crowe_oresme.pdf |archivedate=January 26, 2004 }} on the subject.</ref>
 
Giusto Bellavitis đã trừu tượng hóa ý tưởng cơ bản vào năm 1835 khi ông thiết lập khái niệm về sự trang bị. Làm việc trong một mặt phẳng Euclide, anh ta đã tạo ra bất kỳ cặp phân đoạn đường nào có cùng độ dài và hướng. Về cơ bản, ông nhận ra một mối quan hệ tương đương trên các cặp điểm (lưỡng cực) trong mặt phẳng và do đó dựng lên không gian đầu tiên của vectơ trong mặt phẳng.<ref name="Crowe"/>{{rp|52–4}}
 
== Góc giữa 2 vectơ ==
Cho 2 vectơ <math>\vec{a}\neq\vec{0}</math> và <math>\vec{b}\neq\vec{0}</math>. Từ điểm O vẽ <math>\vec{OA}=\vec{a}</math> và <math>\vec{OB}=\vec{b}</math>. Khi đó <math>\widehat{AOB}</math> chính là góc giữa <math>\vec a</math> và <math>\vec b</math> . Ký hiệu <math>(\vec{a};\vec{b})=\widehat{AOB}</math>
 
Quy ước trong hình học
2.063

lần sửa đổi