Khác biệt giữa bản sửa đổi của “Lý thuyết hình thái”

→‎Đọc thêm: thêm vài link
(→‎Đọc thêm: thêm vài link)
== Đọc thêm ==
 
* Aarts, C.; Backhouse, R.; Hoogendijk, P.; Voermans, E.; van der Woude, J. (December 1992). "[https://www.researchgate.net/publication/277287583_A_RELATIONAL_THEORY_OF_DATATYPES A Relational Theory of Datatypes]" (PDF). Technische Universiteit Eindhoven.
* Andrews B., Peter (2002). ''An Introduction to Mathematical Logic and Type Theory: To Truth Through Proof'' (2nd ed.). Kluwer. ISBN <bdi>978-1-4020-0763-7</bdi>.
* Covers type theory in depth, including polymorphic and dependent type extensions. Gives categorical semantics.
* Cardelli, Luca (1996). "Type Systems". In Tucker, Allen B. (ed.). ''The Computer Science and Engineering Handbook''. CRC Press. pp. 2208–36. ISBN <bdi>9780849329098</bdi>..
* Constable, Robert L. (2012) [2002]. "Naïve Computational Type Theory" ([http://www.nuprl.org/documents/Constable/naive.pdf PDF]). In Schwichtenberg, H.; Steinbruggen, R. (eds.). ''Proof and System-Reliability''. Nato Science Series II. '''62'''. Springer. pp. 213–259. ISBN <bdi>9789401004138</bdi>.
* Coquand, Thierry (2018) [2006]. "Type Theory". ''Stanford Encyclopedia of Philosophy''.
* Thompson, Simon (1991). ''Type Theory and Functional Programming''. Addison–Wesley.
* Kamareddine, Fairouz D.; Laan, Twan; Nederpelt, Rob P. (2004). ''A modern perspective on type theory: from its origins until today''. Springer.
* Ferreirós, José; Domínguez, José Ferreirós (2007). "X. Logic and Type Theory in the Interwar Period". ''Labyrinth of thought: a history of set theory and its role in modern mathematics'' (2nd ed.). Springer.
* Laan, T.D.L. (1997). ''The evolution of type theory in logic and mathematics'' ([https://pure.tue.nl/ws/files/1383309/498552.pdf PDF]) (PhD). Eindhoven University of Technology.
 
== Liên kết ngoài ==
18.453

lần sửa đổi