Mở trình đơn chính
Hình 3: Một biến đổi đồng luân tách cà phê thành xuyến.
Hình 4: Hai đường đậm là đồng luân theo các điểm cuối của chúng. Các hình ảnh động mô tả một phép biến đổi đồng luân.
Hình 5: Hai đường đậm là đồng luân theo các điểm cuối của chúng. Các đường nhỏ mô tả một phép biến đổi đồng luân.
Hình 6: Quá trình biến đổi đồng luân.
Hình 7: Homotopy group addition

Trong tô pô, hai ánh xạ liên tục từ không gian tôpô này vào không gian tô pô khác được gọi là đồng luân với nhau (tiếng Hy Lạp ὁμός-homos-đồng nhất và τόπος-topos-vị trí) nếu ánh xạ này có thể biến đổi liên tục thành ánh xạ kia, một phép biến đổi như vậy gọi là một phép biến đổi đồng luân giữa hai ánh xạ. Ngoài ra đồng luân còn nói đến nhóm đồng luânnhóm đối đồng luân, các bất biến quan trọng trong tô pô đại số.

Định nghĩaSửa đổi

  • Một biến đổi đồng luân giữa hai ánh xạ liên tục    từ không gian tô pô   vào không gian tô pô   được định nghĩa là ánh xạ liên tục   từ tích của không gian   với đoạn đơn vị   vào   sao cho với mọi điểm   ta có   .
  • Nếu ta nghĩ tham số thứ hai của   như là thời gian, khi đó   mô tả một biến đổi liên tục ánh xạ   thành   ký hiệu  . Tại thời điểm   ta có ánh xạ  , tại thời điểm   ta có ánh xạ  . Chúng ta cũng có thể nghĩ đến tham số thứ hai như điều khiển một thanh trượt cho quá trình chuyển đổi từ   để   như di chuyển thanh trượt   đến  , và ngược lại.
  • Một ký hiệu thay thế khác cho ký hiệu một phép đồng luân giữa hai hàm số liên tục   là một họ của các hàm số liên tục   cho   sao cho    và mỗi bản đồ   liên tục từ   đến  . Hai cách viết này trùng nhau bằng cách thiết lập  
  • Ví dụ về phép biến đổi đồng luân của cốc cà phê thành hình xuyến (sử dụng phần mềm Sketchup file: Ly cà phê).
 
Hình 1: Quá trình biến đổi cốc cà phê thành hình xuyến qua phép biến đổi đồng luân.
 
Hình 2: Góc nhìn khác của quá trình biến đổi đồng luân.

Tính chấtSửa đổi

  • Hàm số liên tục    được gọi là đồng luân khi và chỉ khi có một đồng luân   từ   đến   như mô tả ở trên. Mối quan hệ đồng luân này tương thích với ánh xạ thành phần theo nghĩa sau đây: Nếu   là đồng luân, và   là đồng luân, thì ánh xạ hợp của chúng    cũng đồng luân do tính chất ánh xạ hợp của hai hàm số liên tục thì liên tục.

Đồng luân đườngSửa đổi

  • Nhắc lại về đường đi trong không gian   là ánh xạ liên tục   từ khoảng   trong tô pô Euclid vào  . Điểm   được gọi là điểm đầu và điểm   được gọi là điểm kết thúc.[1]
  • Đặt    là hai đường từ   sang   trong  . Một phép đồng luân từ    là họ các ánh xạ:  , như vậy ánh xạ   là liên tục,  , và với mọi điểm   đường   đi từ  .[1]
  • Nếu có một phép đồng luân từ   chúng ta nói rằng   đồng luân với  , thường ký hiệu là   ~  .[1]
  • Một vòng hay một đường đi đóng tại   là một đường mà điểm đầu và điểm cuối của nó là  . Nói cách khác, nó là một ánh xạ liên tục   sao cho  . Vòng bất biến là vòng mà   =  với mọi  .[1]
  • Một không gian được gọi là đơn liên nếu nó liên thông đường và bất kì vòng là đồng phôi với một vòng bất biến.[1]
  • Ví Dụ:
Trong không gian định chuẩn hai đường   cùng điểm đầu và cùng điểm cuối là đồng luân. Thông qua đồng luân  .

Mệnh đềSửa đổi

  1. Quan hệ đồng luân trên các tập của tất cả các đường từ   sang   là mối quan hệ tương đương.[1]
  2. 2. Nếu không gian   có sự biến dạng co rút lại thành không gian con   thì   là đồng luân với  .[1]
  3. 3. Nếu   ~    ~  thì   ~  . Thì chúng ta có thể định nghĩa  .[1]
  4. 4. Nếu   là đường từ   sang   thì   là đồng luân chứa vòng tại  .[1]
  5. 5. Đặt   là đường từ   sang   là nhóm cơ bản của   tại   thì ánh xạ:
 
 
là đồng phôi.[1]

Đồng luân tương đươngSửa đổi

  • Cho hai không gian    chúng ta nói rằng chúng tương đương đồng luân, hoặc của cùng một dạng đồng luân, nếu có tồn tại ánh xạ liên tục    như vậy mà   là đồng luân với tính chất ánh xạ ánh xạ đồng nhất    là đồng luân ánh xạ đồng nhất  . Các ánh xạ    được gọi là tương đương đồng luân trong trường hợp này. Mỗi đồng phôi là đồng luân tương đương, nhưng điều ngược lại là không thật sự đúng.
  • Ví dụ: Một đĩa rắn không phải là đồng phôi với một điểm duy nhất (vì không có song ánh giữa chúng), mặc dù các ổ đĩa và các điểm tương đương đồng luân (kể từ khi bạn có thể biến dạng đĩa dọc theo các đường xuyên tâm liên tục vào một điểm duy nhất).
  • Hai không gian    tương đương đồng luân nếu họ có thể được chuyển đổi thành một khác bằng cách uốn cong, thu hẹp và mở rộng hoạt động. Ví dụ, một đĩa cứng hoặc bóng rắn là tương đương đồng luân đến một điểm, và   là tương đương đồng luân với đơn vị vòng tròn  . Không gian đó là tương đương đồng luân đến một điểm được gọi là co rút.

Xem thêmSửa đổi

Tham khảoSửa đổi

  1. ^ a ă â b c d đ e ê g - [TS. Huỳnh Quang Vũ| [1]| Giáo trình Tô Pô | | 2012-2013| Chương 15 - Trang 73 ]