Trong toán học, đa thức trên một vành (hoặc trường) K là một biểu thức dưới dạng tổng đại số của các đơn thức. Mỗi đơn thức là tích của một phần tử (được gọi là hệ tử hoặc hệ số) thuộc K với các lũy thừa tự nhiên của các biến.

Trong chương trình giáo dục phổ thông, thường xét các đa thức trên trường số thực, trong những bài toán cụ thể có thể xét các đa thức với hệ số nguyên hoặc hệ số hữu tỷ.

Ví dụ: f (x, y, z) = 2 x2 y - 3 y2 + 5 y z - 2 là một đa thức, với x, yz là các biến.

Hàm số biểu diễn bởi một đa thức được gọi là hàm đa thức. Phương trình P = 0 trong đó P là một đa thức được gọi là phương trình đại số.

Các khái niệm cơ bảnSửa đổi

Đơn thức và đa thứcSửa đổi

Các biểu thức dạng

 

trong đó a thuộc vành (trường) K, x1,x2,...,xm là các biến, các số mũ ki là số tự nhiên, được gọi là các đơn thức của m biến x1,x2,...,xm với hệ tử (hệ số) trong K. Tổng các số mũ của các biến trong đơn thức được gọi là bậc của đơn thức.

Tổng của một số hữu hạn các đơn thức trên vành (trường) K được gọi là đa thức trên vành (trường) K. Mỗi đơn thức được gọi là một hạng tử của đa thức đó. Bậc cao nhất của các số hạng có mặt trong đa thức được gọi là bậc của đa thức. Như vậy đa thức của m biến là biểu thức dạng (hay có kí hiệu là):

 

Mỗi đơn thức cũng được xem là một đa thức

Đa thức trong đó tất cả các số hạng có cùng bậc k được gọi là đa thức đẳng cấp bậc k. Ví dụ: đa thức P(x) =   là đa thức đẳng cấp bậc 3 của hai biến x, y.

Đa thức P(x) được gọi là đa thức thu gọn khi nó không còn để ở dạng khai triển hoặc chưa thành tích, ví dụ   là đa thức chưa thu gọn.

Vành đa thứcSửa đổi

Tập tất cả các đa thức của m biến   trên vành K là một vành, ký hiệu là  . Vành này được gọi là vành đa thức.

Nghiệm của đa thứcSửa đổi

Khi thay các biến   bằng bộ các giá trị   và thực hiện các phép toán ta được kết quả là một phần tử  , được gọi là giá trị của đa thức tại  :

 

Nếu   thì   được gọi là nghiệm của đa thức. Chúng còn được gọi là các điểm 0 của đa thức qua định lý sau: " a được gọi là nghiệm của đa thức f(x) khi và chỉ khi f(a)=0"

Các bài toán đầu tiên về đa thức là tìm các nghiệm của đa thức, cũng là nghiệm của phương trình đại số vì nếu ta có x là nghiệm của đa thức f(x) làm cho đa thức này bằng không và x cũng là nghiệm của đa thức g(x) và làm cho nó bằng 0 thì f(x)=g(x)=0 và do đó là nghiệm của phương trình.

 

nên đa thức của m biến được nhiều người gọi là đa thức của m ẩn.

Định lý về nghiệm của đa thức có nhiều ứng dụng, chẳng hạn như tìm các hệ số để đa thức f(x) chí hết cho đa thức g(x), lấy ví dụ:

TÌm m để   chia hết cho đa thức  .

Nếu ta chia theo cách thông thường thì nó cũng sẽ ra nhưng không khoa học, ở đây giả thiết p(x) chia hết cho (x-2) tức là p(x) sẽ được phân tích bằng đa thức g(x) nào đó nhân với x-2, tức là

  hay nói cách khác 2 là một nghiệm của đa thức, ta thay vào p(x) suy ra m=-46. Điều này có thể kiểm nghiệm bằng phép chia đa thức cho đa thức.

Đa thức một biếnSửa đổi

Các đa thức của một biến có dạng

 

với các hệ số   là một đa thức một biến trên  . Nếu an ≠ 0 thì p(x) là đa thức một biến bậc n.

Đa thức trên có thể viết ngắn gọn nhờ ký hiệu xich-ma là  

Một đa thức 1 biến có thể có 1 nghiệm, nhiều nghiệm hoặc không có nghiệm.

Số nghiệm tối đa của đa thức 1 biến không vượt quá bậc của đa thức đó.

Xem thêmSửa đổi

Tham khảoSửa đổi