Chặn Gilbert–Varshamov

Trong lý thuyết mã hóa, chặn Gilbert–Varshamov (chứng minh bởi Edgar Gilbert[1] và một cách độc lập bởi Rom Varshamov[2]) là một giới hạn của các tham số của một (không nhất thiết tuyến tính). Nó còn được gọi là chặn Gilbert–Shannon–Varshamov (hay chặn GSV), nhưng tên gọi "chặn Gilbert–Varshamov" là phổ biến nhất. Varshamov chứng minh kết quả này bằng phương pháp xác suất. Xem thêm về chứng minh này ở chặn Gilbert–Varshamov cho mã tuyến tính.

Phát biểuSửa đổi

Đặt

 

là số lớn nhất các mã tự của mã   trên bảng chữ cái kích thước q, độ dài n và khoảng cách nhỏ nhất d (có thể coi bảng chữ cái là trường   gồm có q phần tử).

Khi đó:

 

Chứng minhSửa đổi

Đặt   là một mã độ dài  , khoảng cách Hamming nhỏ nhất   với kích thước cực đại:

 

Khi đó với mọi   , tồn tại một mã tự   sao cho khoảng cách Hamming   giữa    thỏa mãn

 

vì nếu không ta có thể thêm x vào tập hợp các mã tự mà vẫn duy trì khoảng cách nhỏ nhất d – mâu thuẫn với giả thiết về tính cực đại của  .

Do đó   được phủ bởi hợp của các hình cầu bán kính d − 1 với tâm ở các điểm  :

 

Mỗi hình cầu có chứa

 

điểm vì có thể chọn thay đổi không quá   trong số   vị trí của mã tự (so với giá trị ở tâm hình cầu) và mỗi lần thay đổi có thể lựa chọn một trong q-1 giá trị mới. Do đó

 

Nghĩa là:

 

(Ở đây ta sử dụng tính chất:  ).

Chặn chặt hơn cho lũy thừa số nguyên tốSửa đổi

Khi q là lũy thừa số nguyên tố, có thể chứng minh chặn chặt hơn   trong đó k là số nguyên lớn nhất thỏa mãn

 

Xem thêmSửa đổi

Tham khảoSửa đổi

  1. ^ Gilbert, E. N. (1952), “A comparison of signalling alphabets”, Bell System Technical Journal, 31: 504–522
  2. ^ Varshamov, R. R. (1957), “Estimate of the number of signals in error correcting codes”, Dokl. Acad. Nauk SSSR, 117: 739–741.