Trong hình học, tam giác đềutam giác có ba cạnh bằng nhau hoặc tương đương ba góc bằng nhau, và bằng 60°. Nó là một đa giác đều với số cạnh bằng 3.

Tam giác đều

Tính chấtSửa đổi

Giả sử độ dài ba cạnh tam giác đều bằng  , dùng định lý Pytago chứng minh được:

  • Diện tích:  
  • Chu vi:  
  • Bán kính đường tròn ngoại tiếp  
  • Bán kính đường tròn nội tiếp  
  • Trọng tâm của tam giác cũng là trực tâm và tâm của đường tròn nội tiếp và ngoại tiếp
  • Chiều cao của tam giác đều  .

Với một điểm P bất kỳ trong mặt phẳng tam giác, khoảng cách từ nó đến các đỉnh A, B, và C lần lượt là p, q, và t ta có:,[1]

 .

Với một điểm P bất kỳ nằm bên trong tam giác, khoảng cách từ nó đến các cạnh tam giácd, e, và f, thì d+e+f = chiều cao của tam giác, không phụ thuộc vào vị trí P.[2]

Với điểm P nằm trên đường tròn ngoại tiếp, các khoảng cách từ nó đến các đỉnh của tam giácp, q, và t, thì[1]

 

 .

Nếu P nằm trên cung nhỏ BC của đường tròn ngoại tiếp, với khoảng cách đến các đỉnh A, B, và C lần lượt là p, q, và t, ta có:[1]

 

 

hơn nữa nếu D là giao điểm của BC và PA, DA có độ dài z và PD có độ dài y, thì[3]

 

và cũng bằng   nếu tq; và

 

Dấu hiệu nhận biếtSửa đổi

Xem thêmSửa đổi

Tham khảoSửa đổi

  1. ^ a ă â De, Prithwijit, "Curious properties of the circumcircle and incircle of an equilateral triangle," Mathematical Spectrum 41(1), 2008-2009, 32-35.
  2. ^ Posamentier, Alfred S., and Salkind, Charles T., Challenging Problems in Geometry, Dover Publ., 1996.
  3. ^ Posamentier, Alfred S., and Salkind, Charles T., Challenging Problems in Geometry, second edition, Dover Publ. Co., 1996, pp. 170-172.

Liên kết ngoàiSửa đổi