Khác biệt giữa bản sửa đổi của “Đồng luân”

n
sửa khoảng trắng trước dấu chấm, phẩy, replaced: , → ,, . → . (4) using AWB
n (replaced: |thumb| → |nhỏ| (8))
n (sửa khoảng trắng trước dấu chấm, phẩy, replaced: , → ,, . → . (4) using AWB)
* Nhắc lại về đường đi trong không gian <math>X</math> là ánh xạ liên tục <math>\alpha</math> từ khoảng <math>[0,1]</math> trong tô pô Euclid vào <math>X</math>. Điểm <math>\alpha (0)</math> được gọi là điểm đầu và điểm <math>\alpha (1)</math> được gọi là điểm kết thúc.<ref name = "hqvu">- [TS. Huỳnh Quang Vũ| [http://www.math.hcmus.edu.vn/~hqvu/teaching/n.pdf]| Giáo trình Tô Pô | | 2012-2013| Chương 15 - Trang 73 ]</ref>
* Đặt <math>\alpha</math> và <math>\beta</math> là hai đường từ <math>a</math> sang <math>b</math> trong <math>X</math>. Một phép '''đồng luân''' từ <math>\alpha</math> và <math>\beta</math> là họ các ánh xạ: <math>F_t: X\rarr X, t\in [0,1]</math>, như vậy ánh xạ <math>(t,s)\rarr F_t(s)</math> là liên tục, <math>F_0=\alpha, F_1=\beta</math>, và với mọi điểm <math>t</math> đường <math>F_t</math> đi từ <math>a \rarr b</math>.<ref name = "hqvu"/>
* Nếu có một phép đồng luân từ <math>\alpha \rarr \beta</math> chúng ta nó rằng <math>\alpha</math> '''đồng luân với''' <math>\beta</math>, thường kí hiệu là <math>\alpha</math> ~ <math>\beta</math> .<ref name = "hqvu"/>
* Một vòng hay một đường đi đóng tại <math>a \in X </math> là một đường mà điểm đầu và điểm cuối của nó là <math>a</math>. Nói cách khác, nó là một [[Liên tục trong không gian Tô pô|ánh xạ liên tục]] <math>\alpha: [0,1] \rarr X</math> sao cho <math>\alpha (0) = \alpha (1) =\alpha </math> . Vòng bất biến là vòng mà <math>\alpha (t)</math> =<math>\alpha </math> với mọi <math>t\in[0,1]</math>.<ref name = "hqvu"/>
* Một không gian được gọi là [[đơn liên]] nếu nó [[liên thông đường]] và bất kì vòng là đồng phôi với một [[vòng bất biến]].<ref name = "hqvu"/>
* '''Ví Dụ:'''
 
==Đồng luân tương đương==
* Cho hai không gian <math>X</math> và <math>Y</math> chúng ta nói rằng chúng '''tương đương đồng luân''' , hoặc của cùng một '''dạng đồng luân''', nếu có tồn tại [[Liên tục trong không gian Tô pô|ánh xạ liên tục]] <math>f : X \rarr Y</math> và <math>g : Y \rarr X</math> như vậy mà <math> g\circ f</math> là đồng luân với tính chất ánh xạ [[anh xa dong nhat|ánh xạ đồng nhất]] <math>X</math> và <math>f \circ g</math> là đồng luân [[anh xa dong nhat|ánh xạ đồng nhất]] <math>Y</math>. Các ánh xạ <math>f</math> và <math>g</math> được gọi là tương đương đồng luân trong trường hợp này. Mỗi đồng phôi là đồng luân tương đương, nhưng điều ngược lại là không đúng sự thật.
* Ví dụ: Một đĩa rắn không phải là đồng phôi với một điểm duy nhất (vì không có song ánh giữa chúng), mặc dù các ổ đĩa và các điểm tương đương đồng luân (kể từ khi bạn có thể biến dạng đĩa dọc theo các đường xuyên tâm liên tục vào một điểm duy nhất).
* Hai không gian <math>X</math> và <math>Y</math> tương đương đồng luân nếu họ có thể được chuyển đổi thành một khác bằng cách uốn cong, thu hẹp và mở rộng hoạt động. Ví dụ, một đĩa cứng hoặc bóng rắn là tương đương đồng luân đến một điểm, và <math>R^2-{(0,0)}</math> là tương đương đồng luân với đơn vị vòng tròn <math>S^1</math> . Không gian đó là tương đương đồng luân đến một điểm được gọi là co rút .
 
==Xem thêm==