Khác biệt giữa bản sửa đổi của “Động lực học chất lưu”

Nội dung được xóa Nội dung được thêm vào
Không có tóm lược sửa đổi
n sửa chính tả 3, replaced: ( → ( (3), . → . (2), , → , (6), uơng → ương, ]] and và [[, Further reading → Đọc thêm, ==See also== → ==Xem thêm==, của của → của using AWB
Dòng 1:
<p role="presentation">{{Continuum mechanics|fluid}}
<p role="presentation">{{Continuum mechanics|fluid}}</p>[[Tập_tin:Teardrop_shape.svg|nhỏ|300x300px|Typical [[aerodynamic]] teardrop shape, assuming a [[viscous]] medium passing from left to right, the diagram shows the pressure distribution as the thickness of the black line and shows the velocity in the [[boundary layer]] as the violet triangles. The green [[Vortex generator|vortex generators]] prompt the transition to [[Turbulent_flow]] and prevent back-flow also called [[Flow_separation]] from the high pressure region in the back. The surface in front is as smooth as possible or even employs [[Dermal denticle|shark-like skin]], as any turbulence here reduce the energy of the airflow. The truncation on the right, known as a [[Kammback]], also prevents backflow from the high pressure region in the back across the [[Spoiler (aeronautics)|spoilers]] to the convergent part.]]Trong [[vật lý học]], động lực học chất lưu là một nhánh của cơ học chất lưu, giải quyết các vấn đề của dòng chảy chất lưu – [[khoa học tự nhiên]] về  chuyển động chất lưu (chất lỏng và các chất khí). [[Động lực học chất lưu]] cũng có vài nhánh nhỏ bao gồm: Khí động lực học (nghiên cứu chuyển đông của không khí và các chất khí khác) và [[Thủy động lực học]] (nghiên cứu chuyển động của chất lỏng). Động lực học chất lưu có rất nhiều ứng dụng như tính toán lực và mô men trên khí cụ bay, xác định lưu lượng khối lượng của xăng dầu trong các đường ống, dự đoán các mô hình thời tiết, giải thích tinh vân giữa các vì sao và mô hình hóa các vụ nổ vũ khí phân hạch. Một số nguyên tắc của nó thậm chí còn được sử dụng trong kỹ thuật giao thông trong đó chuyển động giao thông được coi như là chuyển động của một chất lỏng liên tục.
 
<p role="presentation">{{Continuum mechanics|fluid}}</p>[[Tập_tin:Teardrop_shape.svg|nhỏ|300x300px|Typical [[aerodynamic]] teardrop shape, assuming a [[viscous]] medium passing from left to right, the diagram shows the pressure distribution as the thickness of the black line and shows the velocity in the [[boundary layer]] as the violet triangles. The green [[Vortexvortex generator|vortex generators]]s prompt the transition to [[Turbulent_flowTurbulent flow]] and prevent back-flow also called [[Flow_separationFlow separation]] from the high pressure region in the back. The surface in front is as smooth as possible or even employs [[Dermal denticle|shark-like skin]], as any turbulence here reduce the energy of the airflow. The truncation on the right, known as a [[Kammback]], also prevents backflow from the high pressure region in the back across the [[Spoiler (aeronautics)|spoilers]] to the convergent part.]]Trong [[vật lý học]], động lực học chất lưu là một nhánh của cơ học chất lưu, giải quyết các vấn đề của dòng chảy chất lưu – [[khoa học tự nhiên]] về  chuyển động chất lưu (chất lỏng và các chất khí). [[Động lực học chất lưu]] cũng có vài nhánh nhỏ bao gồm: Khí động lực học (nghiên cứu chuyển đông của không khí và các chất khí khác) và [['''Thủy động lực học]]''' (nghiên cứu chuyển động của chất lỏng). Động lực học chất lưu có rất nhiều ứng dụng như tính toán lực và mô men trên khí cụ bay, xác định lưu lượng khối lượng của xăng dầu trong các đường ống, dự đoán các mô hình thời tiết, giải thích tinh vân giữa các vì sao và mô hình hóa các vụ nổ vũ khí phân hạch. Một số nguyên tắc của nó thậm chí còn được sử dụng trong kỹ thuật giao thông trong đó chuyển động giao thông được coi như là chuyển động của một chất lỏng liên tục.
 
Động lực học chất lưu cung cấp một cấu trúc có tính hệ thống – làm nền tảng cho các môn học thực hành nói trên - bao hàm các định luật thực nghiệm và bán thực nghiệm xuất phát từ việc đo lưu lượng và được sử dụng để giải quyết các vấn đề thực tế. Các giải pháp cho một vấn đề động lực học chất lưu thường liên quan đến việc tính toán các đặc tính khác nhau của chất lưu, chẳng hạn như vận tốc dòng chảy, áp suất, khối lượng riêng và nhiệt độ, như là các hàm của không gian và thời gian.
 
Trước thế kỷ XX, thủy động lực học đồng nghĩa với động lực học chất lưu. Điều này vẫn được phản ánh trong tên gọi của một số chủ đề động lực học chất lưu, như là Từ thủy động lực học ( hay Thủy động lực học của chất lỏng dẫn điện, English: [[Magnetohydrodynamics]]) và ổn định thủy động lực học, cả hai đều có thể được áp dụng cho các loại chất khí.<ref>{{Cite book|title=The Dawn of Fluid Dynamics: A Discipline Between Science and Technology|first=Michael|last=Eckert|publisher=Wiley|year=2006|isbn=3-527-40513-5|page=ix}}</ref>
 
==Phương trình động lực học chất lưu==
Các tiên đề cơ bản của động lực học chất lưu là các định luật bảo toàn, cụ thể là, bảo toàn khối lượng , bảo toàn động lượng tuyến tính (còn được gọi là Định luật thứ hai của Newton về chuyển động), và bảo toàn năng lượng (còn được gọi là Định luật thứ nhất của nhiệt động lực học). Những định luật này được dựa trên cơ học cổ điển và được sửa đổi trong cơ học lượng tử và thuyết tương đối rộng. Chúng được biểu diễn bằng Định lý Vận chuyển Reynolds.
 
Ngoài ra, các chất lưu được cho là tuân theo các giả định liên tục. Các chất lưu bao gồm các phân tử va chạm với nhau và các vật thể rắn. Tuy nhiên, giả định liên tục coi các chất lưu là liên tục, chứ không phải rời rạc. Do đó, các thuộc tính như khối lượng riêng, áp suất, nhiệt độ, và vận tốc dòng chảy được giả định cũng được xác định tại các điểm cực nhỏ, và được giả định thay đổi liên tục từ điểm này đến điểm khác. Việc này đã bỏ qua thực tế là các chất lưu được tạo thành từ các phân tử rời rạc.
Hàng 26 ⟶ 28:
 
:The differential form of the momentum conservation equation is as follows. Here, both surface and body forces are accounted for in one total force, ''F''. For example, ''F'' may be expanded into an expression for the frictional and gravitational forces acting on an internal flow.
:Dạng vi phân của phương trình bảo toàn động lượng được trình bày dưới đây. Ở đây, cả lực khối và lực mặt được tính vào tổng lực, ''F''. Ví dụ, ''F'' có thể là tổng lực của cả lực ma sát và trọng lực tác dụng lên một dòng chảy bên trong (đường ống, ...).
::<math>\ {D \mathbf{u} \over D t} = \mathbf{F} - {\nabla p \over \rho} </math>
 
<dd>Trong khí động học, không khí được giả định là một chất lỏng Newton, tức là thừa nhận một mối quan hệ tuyến tính giữa ứng suất cắt (do các lực ma sát trong) và tốc độ biến dạng của chất lưu. Phương trình trên là phương trình vector: trong một dòng chảy ba chiều, nó có thể được thể hiện bằng ba phương trình vô hướng. Các phương trình bảo toàn động lượng cho trường hợp dòng chảy nhớt nén được gọi là các phương trình Navier - Stokes.{{citation needed|date=May 2014}}</dd>
*[[Bảo toàn năng lượng]]: Mặc dù năng lượng có thể được chuyển đổi từ dạng này sang dạng khác, tổng năng lượng trong một hệ khép kín vẫn không thay đổi.
::<math>\ \rho {Dh \over Dt} = {D p \over D t} + \nabla \cdot \left( k \nabla T\right) + \Phi </math>
 
:Trong công thức trên, ''h'' là enthalpy, ''k'' là độ dẫn nhiệt của chất lưu, ''T'' là nhiệt độ, và <math>\Phi</math> hàm tiêu nhớt. Hàm tiêu nhớt chi phối tốc độ năng lượng cơ học của dòng chảy chuyển thành nhiệt. Định luật thứ hai của nhiệt động lực yêu cầu <math>\Phi</math> phải luôn luôn dương, tức là: độ nhớt không thể tạo ra năng lượng bên trong khối thể tích kiểm tra.<ref>White, F.M., ''Viscous Fluid Flow'', McGraw–Hill, 1974.</ref> Biểu thức phía bên trái là một đạo hàm hữu hình (Material derivative).
Hàng 38 ⟶ 40:
 
Về mặt toán học, dòng chảy là không nén được nếu mật độ ρ của một khối nhỏ chất lỏng không thay đổi khi nó di chuyển trong trường dòng chảy, tức là,
:<math>\frac{\mathrm{D} \rho}{\mathrm{D}t} = 0 \, ,</math>
trong đó D/Dt là [[đạo hàm tổng]] (substantial derivative), tức là tổng của các đạo hàm địa phương và đạo hàm đối lưu ([[Time derivative|local]] and [[Convectiveconvective derivative|convective derivatives]]s).Sự tổng hợp này giúp làm đơn giản hóa các phương trình, đặc biệt là trong trường hợp chất lưu có mật độ đồng nhất.
 
Đối với dòng chảy của các khí, để xác định được rằng nên sử dụng động lực học chất lưu nén được hay động lực học chất lưu không nén được, thì cần đánh giá dựa trên [[số Mach]] của dòng chảy. Tính nén được có thể được bỏ qua nếu số Mach thấp hơn 0,3. Đối với chất lỏng, giả định không nén được có hợp lý hay không phụ thuộc vào tính chất của chất lỏng (đặc biệt là áp suất tới hạn và nhiệt độ của chất lỏng) và các điều kiện dòng chảy (áp suất của dòng chảy thực tế có gần với áp suất tới hạn hay không). Các bài toán về âm thanh luôn yêu cầu phải tính đến tính nén được, bởi vì các sóng âm là sóng nén được nếu có sự thay đổi về áp suất và mật độ trong môi trường mà chúng truyền qua.
==='''Chất lưu Không nhớt, chất lưu Newton và phi Newton'''===
[[Tập_tin:Potential_flow_around_a_wing.gif|nhỏ|Potential flow around a wing]]Tất cả các chất lưu đều có tính nhớt, có nghĩa là chúng có khả năng chống biến dạng: các khối chất lưu cạnh nhau di chuyển với các vận tốc khác nhau tác dụng lực nhớt vào nhau. Gradient vận tốc được xem như là tốc độ biến dạng; nó có đơn vị là '''''T<sup>-1−1</sup>'''''. Isaac Newton cho rằng đối với nhiều chất lưu quen thuộc như nước và không khí, ứng suất gây da bởi những lực nhớt này có quan hệ tuyến tính với tốc độ biến dạng. Các chất lưu như vậy được gọi là chất lưu Newton. Hệ số tỉ lệ được gọi là độ nhớt của chất lưu; đối với chất lưu Newton, độ nhớt là một thuộc tính không phụ thuộc vào tốc độ biến dạng.
 
Chất lưu phi Newton có mối quan hệ ứng suất biến dạng phi tuyến tính phức tạp hơn. Các nghành nghiên cứu nhỏ của của lưu biến học (rheology) nghiên cứu mối quan hệ giữa ứng suất và biến dạng của các chất lưu này, trong đó bao gồm nhũ tương (emulsion) và chất bùn (slurries), vật liệu nhớt đàn hồi như máu và một số hợp chất cao phân tử (polymers), và các chất lỏng dính như nhựa mủ (cao su), mật ong và dầu nhờn.{{citation needed|date=June 2015}}
 
Động lực của các khối chất lưu được mô tả dựa trên định luật thứ hai của Newton. Một khối chất lưu đang gia tốc sẽ chịu tác động của các hiệu ứng quán tính.
Hàng 53 ⟶ 55:
Ngược lại, số Reynolds cao (Re >> 1) thì tức là lực quán tính có ảnh hưởng lớn hơn trên trường vận tốc  so với lực nhớt (ma sát). Các dòng chảy có số Reynolds cao, thường được mô hình hóa như một dòng chảy không nhớt, đây là một ước lượng gần đúng, bởi vì độ nhớt là hoàn toàn bị lãng quên. Các phương trình Navier - Stokes do đó được đơn giản hóa thành các phương trình Euler. Tích phân các phương trình này dọc một đường dòng trong một dòng chảy không nhớt sẽ có được phương trình Bernoulli.  Ngoài việc không nhớt, nếu dòng chảy còn  là dòng chảy không xoáy ở khắp mọi nơi, thì phương trình Bernoulli có thể được sử dụng xuyên suốt trường dòng chảy. Những dòng chảy như vậy được gọi là các dòng chảy tiềm năng (potential flows), bởi vì trường vận tốc có thể được biểu thị như là gradient của một giá trị tiềm năng nào đó (potential).
 
This idea can work fairly well when the Reynolds number is high. However, problems such as those involving solid boundaries may require that the viscosity be included. Viscosity cannot be neglected near solid boundaries because the [[no-slip condition]] generates a thin region of large strain rate, the [[boundary layer]], in which [[viscosity]] effects dominate and which thus generates [[vorticity]]. Therefore, to calculate net forces on bodies (such as wings), viscous flow equations must be used: inviscid flow theory fails to predict [[Drag (physics)|drag forces]], a limitation known as the [[D'Alembert's_paradoxs paradox]].<p>

Ý tưởng này phù hợp nếu số Reynolds là rất lớn. Tuy nhiên, trong nhiều bài toán chẳng hạn như các bài toán liên quan đến các biên cứng thì độ nhớt cần phải được kể đến. Gần các biên cứng, độ nhớt là không thể bị bỏ qua, bởi vì điều kiện không trượt (no-slip condition) tạo ra một lớp mỏng có tốc độ biến dạng lớn, gọi là lớp biên, trong lớp biên này lực nhớt thống trị và do đó tạo ra xoáy (vorticity). Vì vậy, để tính toán lực ròng tác dụng lên các vật thể (ví dụ như là cánh máy bay), các phương trình dòng chảy nhớt phải được sử dụng: lý thuyết dòng chảy không nhớt không dự đoán được lực kéo (nghịch lý d' Alembert).</p><p>

Một phuơngphương pháp thường được sử dụng{{citation needed|date=June 2015}} , đặc biệt là trong động lực học chất lưu điện toán (CFD), là sử dụng hai mô hình dòng chảy: các phương trình Euler cho vùng dòng chảy xa vật thể, và các phương trình lớp biên cho vùng dòng chảy gần vật thể. Hai lời giải này sau đó được kết hợp với nhau, bằng cách sử dụng Phương pháp mở rộng tiệm cận phù hợp ([[Method_of_matched_asymptotic_expansionsMethod of matched asymptotic expansions]]).</p>
 
==='''Dòng chảy ổn định và dòng chảy không ổn định'''===<!-- [[Steady flow]] redirects here -->
[[Tập_tin:HD-Rayleigh-Taylor.gif|nhỏ|320x320px|Hydrodynamics simulation of the [[Rayleigh–Taylor_instabilityRayleigh–Taylor instability]] <ref>Shengtai Li, Hui Li "Parallel AMR Code for Compressible MHD or HD Equations" (Los Alamos National Laboratory) [http://math.lanl.gov/Research/Highlights/amrmhd.shtml]</ref>]]Khi tất cả các đạo hàm thời gian của một trường dòng chảy biến mất, dòng chảy được gọi là dòng chảy ổn định (steady). Dòng chảy ở trạng thái ổn định có nghĩa là các thuộc tính của chất lưu tại một điểm trong hệ thống không thay đổi theo thời gian. Ngược lại, dòng chảy được gọi là không ổn định (còn được gọi là dòng chảy tức thời (transient)<ref>[http://www.cfd-online.com/Forums/main/118306-transient-state-unsteady-state.html Transient state or unsteady state?]</ref>) . Việc một dòng chảy cụ thể là ổn định hay không ổn định, có thể phụ thuộc vào việc lựa chọn hệ quy chiếu. Ví dụ, dòng chảy tầng trên một mặt cầu là ổn định trong hệ quy chiếu tĩnh so với khối cầu. Trong một hệ quy chiếu tĩnh so với dòng chảy thì dòng chảy là không ổn định.
 
Các dòng chảy rối là được định nghĩa là các dòng chảy không ổn định. Một dòng chảy rối có thể, tuy nhiên, ổn định về mặt thống kê. Theo Pope:<ref>See Pope (2000), page 75.</ref>{{quote|text=|sign=|source=|
Hàng 67 ⟶ 74:
Dòng chảy rối có thể được mô tả thông qua việc sử dụng các phương trình Navier - Stokes. Mô phỏng số trực tiếp (DNS), dựa trên các phương trình Navier - Stokes, có thể mô phỏng dòng chảy rối với số Reynolds vừa phải. Sự hạn chế phụ thuộc vào sức mạnh của máy tính được sử dụng và hiệu quả của thuật toán giải pháp. Kết quả DNS đã được chứng minh trùng khớp với dữ liệu thực nghiệm cho một số dòng chảy.<ref>See, for example, Schlatter et al, Phys. Fluids 21, 051702 (2009); {{doi|10.1063/1.3139294}}</ref>
 
Most flows of interest have Reynolds numbers much too high for DNS to be a viable option,<ref>See Pope (2000), page 344.</ref> given the state of computational power for the next few decades. Any flight vehicle large enough to carry a human (L > 3 m), moving faster than 72&nbsp;km/h (20&nbsp;m/s) is well beyond the limit of DNS simulation (Re = 4 million). Transport aircraft wings (such as on an [[Airbus A300]] or [[Boeing 747]]) have Reynolds numbers of 40 million (based on the wing chord). Solving these real-life flow problems requires turbulence models for the foreseeable future. [[Reynolds-averaged Navier–Stokes equations]] (RANS) combined with [[turbulence modelling]] provides a model of the effects of the turbulent flow. Such a modelling mainly provides the additional momentum transfer by the [[Reynolds stresses]], although the turbulence also enhances the [[Heat transfer|heat]] and [[mass transfer]]. Another promising methodology is [[Large_eddy_simulationLarge eddy simulation]] (LES), especially in the guise of [[Detached_eddy_simulationDetached eddy simulation]] (DES)—which is a combination of RANS turbulence modelling and large eddy simulation.
 
Hầu hết các dòng chảy trong thực tế có số Reynolds quá cao vì vậy việc mô phỏng số trực tiếp DNS là một lựa chọn không khả thi, [8] thậm trí với sự tiến bộ của máy điện toán trong vài thập kỷ tới. Mọi phương tiện bay đủ lớn để có thể mang theo một con người (L> 3 m), di chuyển nhanh hơn 72 &nbsp;km/h (20 &nbsp;m/s) đều vượt quá xa giới hạn của mô phỏng DNS (Re = 4.000.000). Cánh máy bay vận tải (chẳng hạn Airbus A300 hoặc Boeing 747) có số Reynolds khoảng 40 triệu (dựa trên góc tấn). Việc tìm lời giải cho các dòng chảy thực tế này cần đến các mô hình dòng chảy rối trong tương lai gần. Các phương trình Navier-Stokes được trung bình bởi Reynolds (RANS) kết hợp với việc mô hình hóa dòng rối tạo ra một mô hình tác động của dòng chảy rối. Một mô hình như vậy sẽ cung cấp giá trị truyền động lượng bổ sung được tạo ra bởi các ứng suất Reynolds, mặc dù sự rối cũng làm tăng truyền nhiệt và khối lượng. Một phương pháp đầy hứa hẹn nữa đó là mô phỏng xoáy lớn (LES), và mô phỏng xoáy tách rời (DES) - một sự kết hợp của mô hình rối RANS và mô phỏng xoáy lớn LES.
 
==='''Dòng chảy dưới âm tốc, cận âm tốc, vượt âm tốc, siêu âm tốc'''===
Trong khi nhiều dòng chảy trên mặt đất (ví dụ dòng chảy của nước trong đường ống) diễn ra với các số Mach thấp, nhiều dòng chảy thực tế khác (ví dụ trong khí động học) diễn ra với số Mach cao M = 1 hoặc lớn hơn (các dòng siêu âm). Việc này kéo theo các hiện tượng khác ( ví dụ như sóng xung kích của dòng vượt âm tốc, bất ổn định cận âm trong dòng chảy có M xấp xỉ 1, mất cân bằng hóa học do sự ion hóa trong các dòng siêu âm), do đó các chế độ dòng chảy này cần được xử lý theo các cách khác nhau.
==='''Từ Thủy động lực học'''===
{{main|Magnetohydrodynamics}}
Từ thủy động lực học là ngành khoa học nghiên cứu dòng chảy của chất lưu dẫn điện trong trường điện từ. Ví dụ về các chất lưu như vậy bao gồm huyết tương, kim loại lỏng , và nước muối. Các phương trình dòng chảy chất lưu được giải đồng thời với các phương trình điện từ của Maxwell.
===Các ước lượng gần đúng===
Có một số lượng lớn các ước lượng gần đúng phục vụ cho việc tìm lời giải của các bài toàn động lực học chất lưu. Dưới đây là một số ước lượng gần đúng thường được sử dụng.
Hàng 88 ⟶ 95:
The concept of [[Pressure]] is central to the study of both fluid statics and fluid dynamics. A pressure can be identified for every point in a body of fluid, regardless of whether the fluid is in motion or not. Pressure can be [[Pressure measurement|measured]] using an aneroid, Bourdon tube, mercury column, or various other methods.
 
Some of the terminology that is necessary in the study of fluid dynamics is not found in other similar areas of study. In particular, some of the terminology used in fluid dynamics is not used in [[Fluid_staticsFluid statics]].
 
Khái niệm về áp suất là trung tâm nghiên cứu của cả hai tĩnh học chất lưu và động lực học chất lưu. Áp suất có thể được xác định cho mỗi điểm trong một chất lưu, bất kể các chất lưu đang chuyển động hay không. Áp suất có thể được đo bằng hộp đo khí áp, ống Bourdon , cột thủy ngân, hoặc các phương pháp khác.
 
Một số thuật ngữ đó là cần thiết trong việc nghiên cứu động lực học chất lưu không được tìm thấy ở các lĩnh vực nghiên cứu tương tự khác. Đặc biệt, một số thuật ngữ được sử dụng trong động lực học chất lưu không được dùng trong tĩnh học chất lưu.
 
===Terminology in incompressible fluid dynamics '''Thuật ngữ trong động lực học chất lưu không nén được'''===
The concepts of total pressure and [[dynamic pressure]] arise from [[Bernoulli's equation]] and are significant in the study of all fluid flows. (These two pressures are not pressures in the usual sense—they cannot be measured using an aneroid, Bourdon tube or mercury column.) To avoid potential ambiguity when referring to [[pressure]] in fluid dynamics, many authors use the term [[static pressure]] to distinguish it from total pressure and dynamic pressure. [[Static_pressureStatic pressure]] is identical to [[Pressure]] and can be identified for every point in a fluid flow field.
 
In ''Aerodynamics'', L.J. Clancy writes:<ref>Clancy, L.J. ''Aerodynamics'', page 21</ref> ''To distinguish it from the total and dynamic pressures, the actual pressure of the fluid, which is associated not with its motion but with its state, is often referred to as the static pressure, but where the term pressure alone is used it refers to this static pressure.''
 
A point in a fluid flow where the flow has come to rest (i.e. speed is equal to zero adjacent to some solid body immersed in the fluid flow) is of special significance. It is of such importance that it is given a special name—a [[Stagnation_pointStagnation point]]. The static pressure at the stagnation point is of special significance and is given its own name—[[Stagnation_pressureStagnation pressure]]. In incompressible flows, the stagnation pressure at a stagnation point is equal to the total pressure throughout the flow field.
 
Các khái niệm về tổng áp suất và áp suất động học phát sinh từ phương trình Bernoulli và rất quan trọng trong việc nghiên cứu tất cả các dòng chất lưu. (Hai loại áp suất này không phải là áp suất thông thường – chúng không thể được đo bằng hộp đo khí áp, ống Bourdon, hay cột thủy ngân). Để tránh sự mơ hồ khi đề cập đến áp suất trong động lực học chất lưu, nhiều tác giả sử dụng cụm từ áp lực tĩnh để phân biệt với tổng áp suất và áp suất động. Áp suất tĩnh giống hệt với khái niệm áp suất và có thể được xác định cho mỗi điểm trong một trường dòng chảy chất lưu.
 
Trong Khí động học , L.J. Clancy viết: [ 9 ] Để phân biệt áp suất tĩnh với tổng áp suất và áp suất động, áp suất thực tế của chất lưu không liên quan đến chuyển động mà phụ thuộc vào trạng thái của chất lưu, thường được gọi là áp suất tĩnh, nhưng nếu chỉ nói áp suất thì tức là đang đề cập đến áp suất tĩnh này.
 
Một điểm trong một dòng chảy chất lưu mà tại đó dòng chảy đã ngừng chảy (nghĩa là tốc độ bằng không liền kề với một số vật thể rắn chìm trong dòng chảy chất lưu) có một ý nghĩa đặc biệt. Vì tầm quan trọng của nó mà nó được đặt tên riêng là – áp suất ứ đọng. Áp suất tĩnh tại điểm ứ đọng có ý nghĩa đặc biệt và được đặt tên riêng là – áp suất ứ đọng. Trong các dòng chảy không nén được, áp suất ứ đọng tại một điểm ứ đọng là bằng tổng áp xuyên suốt trường dòng chảy.
Hàng 112 ⟶ 119:
The temperature and density at a [[stagnation point]] are called stagnation temperature and stagnation density.
 
A similar approach is also taken with the thermodynamic properties of compressible fluids. Many authors use the terms total (or stagnation) [[Enthalpy]] and total (or stagnation) [[Entropy]]. The terms ''static enthalpy'' and ''static entropy'' appear less common, but where they are used they mean enthalpy and entropy respectively, using the prefix "static" to avoid ambiguity with their 'total' or 'stagnation' counterparts. Because the 'total' flow conditions are defined by [[Isentropic|isentropicallyisentropic]]ally bringing the fluid to rest, the total (or stagnation) entropy is by definition always equal to the "static" entropy.
 
Trong một chất lưu nén được, chẳng hạn như không khí, nhiệt độ và mật độ là rất cần thiết khi xác định trạng thái của chất lưu. Ngoài khái niệm tổng áp suất (còn gọi là áp suất ứ đọng), các khái niệm về tổng nhiệt độ (hay nhiệt độ ứ đọng) nhiệt độ và tổng mật độ (hay mật độ ứ đọng) mật độ cũng rất cần thiết trong bất kỳ nghiên cứu nào về dòng chảy chất lưu nén được. Để tránh nhầm lẫn khi đề cập đến nhiệt độ và mật độ, nhiều tác giả sử dụng các thuật ngữ nhiệt độ tĩnh và mật độ tĩnh. Nhiệt độ tĩnh tức là khái niệm về nhiệt độ; và mật độ tĩnh cũng tức là mật độ; và cả hai có thể được xác định cho mỗi điểm trong một trường dòng chảy chất lỏng.
Hàng 272 ⟶ 279:
* [[Finite volume method for unsteady flow]]
}}
===SeeXem alsothêm===
{{div col|4}}
* [[Aileron]]
Hàng 319 ⟶ 326:
* [[Wingtip vortices]]
{{div col end}}<h2>References</h2>{{reflist|2}}
==FurtherĐọc readingthêm==
<ul><li>{{cite book|last=Acheson|first=D. J.|title=Elementary Fluid Dynamics|publisher=Clarendon Press|year=1990|isbn=0-19-859679-0}}</li><li>{{cite book|last=Batchelor|first=G. K.|authorlink=George Batchelor|title=An Introduction to Fluid Dynamics|publisher=Cambridge University Press|year=1967|isbn=0-521-66396-2}}</li><li>{{cite book|last=Chanson|first=H.|authorlink=Hubert Chanson|title=Applied Hydrodynamics: An Introduction to Ideal and Real Fluid Flows|publisher=CRC Press, Taylor & Francis Group, Leiden, The Netherlands, 478 pages|year=2009|isbn=978-0-415-49271-3}}</li><li>{{cite book|last=Clancy|first=L. J.|title=Aerodynamics|publisher=Pitman Publishing Limited|location=London|year=1975|isbn=0-273-01120-0}}</li><li>{{cite book|last=Lamb|first=Horace|authorlink=Horace Lamb|title=Hydrodynamics|edition=6th|publisher=Cambridge University Press|year=1994|isbn=0-521-45868-4}} Originally published in 1879, the 6th extended edition appeared first in 1932.</li><li>{{cite book|last1=Landau|first1=L. D.|author1-link=Lev Landau|last2=Lifshitz|first2=E. M.|author2-link=Evgeny Lifshitz|title=Fluid Mechanics|edition=2nd|series=[[Course of Theoretical Physics]]|publisher=Pergamon Press|year=1987|isbn=0-7506-2767-0}}</li><li>{{cite book|last=Milne-Thompson|first=L. M.|title=Theoretical Hydrodynamics|edition=5th|publisher=Macmillan|year=1968}} Originally published in 1938.</li><li>{{cite book|last=Pope|first=Stephen B.|title=Turbulent Flows|publisher=Cambridge University Press|year=2000|isbn=0-521-59886-9}}</li><li>{{cite book|last=Shinbrot|first=M.|title=Lectures on Fluid Mechanics|publisher=Gordon and Breach|year=1973|isbn=0-677-01710-3}}</li><li>{{citation |last1=Nazarenko|first1=Sergey|year=2014|title=Fluid Dynamics via Examples and Solutions|publisher=CRC Press (Taylor & Francis group)|isbn=978-1-43-988882-7}}</li><li href="Scholarpedia">[http://www.scholarpedia.org/article/Encyclopedia:Fluid_dynamics Encyclopedia: Fluid dynamics] [[Scholarpedia]]</li></ul><h2>External links</h2>{{Commons category|Fluid dynamics}}{{Commons category|Fluid mechanics}}
*[http://www.efluids.com/ eFluids], containing several galleries of fluid motion
*[http://web.mit.edu/hml/ncfmf.html National Committee for Fluid Mechanics Films (NCFMF)], containing films on several subjects in fluid dynamics (in [[RealMedia]] format)
*[http://www.salihnet.freeservers.com/engineering/fm/fm_books.html List of Fluid Dynamics books]
{{NonDimFluMech}} {{physics-footer|continuum='''[[Continuum mechanics]]'''}}<p role="presentation"></p>
 
[[Thể loại:Động lực học chất lưu]]
[[Thể loại:Cơ học chất lưu]]