Khác biệt giữa bản sửa đổi của “Định lý lớn Fermat”

Nội dung được xóa Nội dung được thêm vào
Không có tóm lược sửa đổi
n replaced: . → . (5), , → , using AWB
Dòng 18:
Hoàn toàn tách biệt, khoảng năm 1955, các nhà toán học người Nhật Goro Shimura và Yutaka Taniyama nghi ngờ một liên kết có thể tồn tại giữa các đường cong elliptic và dạng mô đun, hai lĩnh vực toán học hoàn toàn khác nhau. Được biết đến vào thời điểm đó là giả thuyết Taniyama-Shimura-Weil, và (cuối cùng) là định lý mô đun, nó tự đứng vững, không có kết nối rõ ràng với Định lý cuối cùng của Fermat. Nó được xem là quan trọng, nhưng nó (như định lý của Fermat) được xem là không thể chứng minh được.
 
Năm 1984, Gerhard Frey nhận thấy một liên kết rõ ràng giữa hai vấn đề không liên quan và chưa được giải quyết trước đây. Một phác thảo cho thấy điều này có thể được chứng minh đã được đưa ra bởi Frey. Bằng chứng đầy đủ cho thấy hai vấn đề này có liên quan mật thiết với nhau, được xây dựng bởi Ken Ribet vào năm 1986 dựa trên cách chứng minh từng phần của Jean-Pierre Serre, người đã chứng minh được tất cả nhưng chỉ một phần được gọi là "dự đoán epsilon" (xem định lý của Ribet và đường Frey) . Bằng tiếng Anh, các giấy tờ của Frey, Serre và Ribet chỉ ra rằng nếu Định lý mô đun có thể được chứng minh cho ít nhất là bán ổn định lớp đường cong elliptic, thì một cách chứng minh của Định lý cuối cùng của Fermat cũng sẽ tự động được thực hiện. Kết nối được mô tả dưới đây: bất kỳ giải pháp nào có thể trái ngược với Định lý cuối cùng của Fermat cũng có thể được sử dụng để đảo lại với Định lý mô đun. Vì vậy, nếu định lý Mô-đun đã được tìm thấy là đúng, thì theo định nghĩa không có cách giải nào đảo với Định lý cuối cùng của Fermat có thể tồn tại, điều này cũng phải là đúng.
 
Mặc dù cả hai vấn đề này đều là những vấn đề khó khăn được xem là "hoàn toàn không thể tiếp cận" được vào thời điểm đó, nhưng đây là gợi ý đầu tiên của một lộ trình mà theo đó Định lý cuối cùng của Fermat có thể được mở rộng và chứng minh cho tất cả các con số, chứ không phải chỉ một số con số. Điều quan trọng là các nhà nghiên cứu lựa chọn một chủ đề nghiên cứu thực sự là không giống như Định lý Cuối cùng của Fermat, Định lý mô đun là một lĩnh vực nghiên cứu chủ yếu mà một cách chứng minh được yêu cầu rộng rãi và không chỉ là một sự kỳ quặc lịch sử, do đó thời gian làm việc trên đó có thể được chứng minh là vo cùng chuyên nghiệp. Tuy nhiên, ý kiến ​​chung cho rằng điều này chỉ đơn giản cho thấy cái không thực tế của chứng minh Taniyama-Shimura phỏng đoán. Phản hồi được trích dẫn từ nhà toán học John Coates:
 
"Bản thân tôi rất hoài nghi rằng mối liên hệ tuyệt vời giữa Định lý Cuối cùng của Fermat và giả thuyết Taniyama-Shimura sẽ thực sự dẫn đến bất cứ điều gì, bởi vì tôi phải thú nhận rằng tôi không nghĩ rằng giả thuyết Taniyama-Shimura có thể chứng minh được. , nó dường như không thể chứng minh. Tôi phải thú nhận rằng tôi nghĩ có lẽ tôi sẽ không chứng kiến ​​điều đó trong suốt cuộc đời mình. "
 
Khi nghe Ribet đã chứng minh liên kết của Frey là đúng, nhà toán học người Anh Andrew Wiles, người đã có một niềm đam mê từ thời thơ ấu với Định lý cuối cùng của Fermat và có nền tảng làm việc với đường cong elliptic và các lĩnh vực liên quan, quyết định thử chứng minh giả thuyết Taniyama-Shimura như một cách để chứng minh Định lý Cuối cùng của Fermat. Năm 1993, sau sáu năm làm việc bí mật về vấn đề này, Wiles đã thành công trong việc chứng minh đủ các giả thuyết để chứng minh Định lý Cuối cùng của Fermat. Bản báo cáo của Wiles có quy mô và phạm vi lớn. Một lỗ hổng đã được phát hiện trong một phần của bài báo gốc của ông trong quá trình xem xét lại và cần thêm một năm nữa và hợp tác với một học sinh cũ, Richard Taylor, để giải quyết. Kết quả là, chứng minh được công bố cuối cùng năm 1995 được kèm theo một báo cáo thứ hai nhỏ hơn cho thấy rằng các bước cố định là hợp lệ. Thành tựu của Wiles được báo cáo rộng rãi trong báo chí nổi tiếng và được phổ biến rộng rãi trong các cuốn sách và chương trình truyền hình. Các phần còn lại của dự đoán Taniyama-Shimura-Weil, bây giờ đã được chứng minh và được gọi là định lý Mô đun, sau đó được chứng minh bởi các nhà toán học khác, người đã xây dựng dựa trên công trình của Wiles từ năm 1996 đến năm 2001. Xứng đáng với chứng minh của ông, Wiles được vinh danh và nhận được nhiều giải thưởng, bao gồm giải thưởng Abel năm 2016.
Dòng 30:
Có một số cách khác để tuyên bố định lý cuối cùng của Fermat có toán học tương đương với câu lệnh ban đầu của vấn đề.
 
Để biểu diễn chúng, chúng ta sử dụng ký hiệu toán học: để N là tập các số tự nhiên 1,2,3, ..., để Z là tập các số nguyên 0, ± 1, ± 2, ..., và để cho Q là tập các số hợp các số ngẫu nhiên  trong đó a và b thuộc Z với b ≠ 0, Dưới đây, chúng ta sẽ gọi một giải pháp cho xn + yn = zn, trong đó một hoặc nhiều x, y, hoặc z có giá trị là 0 thì cách giải sẽ trở nên bình thường. Một giải pháp mà cả ba không phải là giá trị 0 thì sẽ trở nên bất thường.
 
Để so sánh, chúng ta bắt đầu với công thức ban đầu.
Dòng 56:
 
=== Phát biểu tương đương 4 ===
Kết nối với các đường cong elliptic: Nếu a, b, c là một giải pháp không tầm thường đối với x<sup>p</sup> + y<sup>p</sup> = z<sup>p</sup>, p là số lẻ, thì y<sup>2</sup> = x (x - a<sup>p</sup>) (x + b<sup>p</sup>) (đường cong Frey) sẽ là một đường cong elliptic .
 
Xem đường cong elliptic này với định lý Ribet cho thấy nó không thể có dạng mô đun. Tuy nhiên, chứng minh của Andrew Wiles chứng minh rằng bất kỳ phương trình có dạng y<sup>2</sup> = x (x - a<sup>n</sup>) (x + b<sup>n</sup>) luôn luôn có một dạng mô đun. Bất kỳ giải pháp nào đối với x<sup>p</sup> + y<sup>p</sup> = z<sup>p</sup> (với p là số lẻ) sẽ tạo ra mâu thuẫn, do đó chứng minh rằng không có các giải pháp nào tồn tại.
Dòng 74:
 
==== Phương trình Diophantine ====
Phương trình Fermat, x<sup>n</sup> + y<sup>n</sup> = z<sup>n</sup> với các nghiệm là số nguyên dương, là một ví dụ về phương trình Diophantine, được đặt tên theo tên của nhà toán học Alexandrian ở thế kỷ thứ ba, Diophantus, người đã nghiên cứu chúng và phát triển phương pháp để giải một số phương trình Diophantine . Một vấn đề Diophantine điển hình là tìm hai số nguyên x và y sao cho tổng của chúng và tổng bình phương bằng hai số A và B tương ứng:
 
A= x+y
Dòng 105:
Định lý này được gọi là định lý cuối cùng của Fermat hay định lý Lớn Fermat là vì vào năm 1630, Fermat cho rằng không thể tìm được nghiệm (nguyên) cho phương trình bậc ba. Điều lý thú ở đây là phỏng đoán này được Fermat viết lại trên lề cuốn sách ''Arithmetica'' của [[Diophantus]] mà không chứng minh, nhưng có kèm theo dòng chữ: “Tôi có một phương pháp rất hay để chứng minh cho trường hợp tổng quát, nhưng không thể viết ra đây vì lề sách quá hẹp." Việc ông có thực sự chứng minh được định lý đó hay không vẫn còn gây tranh cãi, nhưng vấn đề này đã trở thành một vấn đề nổi tiếng trong toán học. Các nhà toán học hết thế hệ này đến thế hệ khác đã cố sức và đều thất bại trong việc tìm ra lời giải cho định lý này.<ref name=":0">[http://baotintuc.vn/giai-mat/fermat-va-dinh-ly-lon-thach-do-suot-4-the-ky-20140818000138402.htm Fermat và Định lý Lớn thách đố suốt 4 thế kỷ]</ref>
 
Với những dòng viết tay đó, nhà toán học người Pháp Pierre de Fermat đã chính thức buông lời thách đố đối với thế hệ các nhà toán học sau ông. Nhiều nhà toán học đã dành cả cuộc đời để cố chứng minh định lý phát biểu nghe có vẻ hết sức đơn giản này. 
 
Hành trình mấy trăm năm để giải lời thách đố, cùng với sự phức tạp của lời giải hàng trăm trang, từ bao thế hệ các nhà toán học đã làm người ta vừa nghi ngờ dòng ghi chú của Fermat, vừa tò mò, thán phục ông.
Dòng 166:
*[http://diendantoanhoc.net/forum/index.php?showtopic=2051 Andrew Wiles với quá trình giải bài toán]
*[http://diendantoanhoc.net/modules.php?name=News&file=article&sid=235 Cách chứng minh thứ hai của định lý Fermat lớn]
 
[[Thể loại:Toán học]]
[[Thể loại:Lý thuyết số]]