Khác biệt giữa các bản “Oxford Calculators”

AlphamaEditor, thêm thể loại, Executed time: 00:00:04.2180204 using AWB
(Trang mới: “thumb|[[Richard Swineshead, ''Người tính toán'', 1520]] '''Oxford Calculators''…”)
Thẻ: Trình soạn thảo mã nguồn 2017
 
(AlphamaEditor, thêm thể loại, Executed time: 00:00:04.2180204 using AWB)
[[FileTập tin:Swineshead, Richard – Calculator, 1520 – BEIC 143141.jpg|thumb|[[Richard Swineshead]], ''[[Người tính toán]]'', [[1520]]]]
'''Oxford Calculators''' (dịch sang [[tiếng Việt]] có nghĩa là '''Những người tính toán ở Oxford''') là một nhóm các nhà tư tưởng vào [[thế kỷ 14]], hầu như có liên quan đến [[Trường đại học Merton, Oxford|Trường đại học Merton]], [[Oxford]]; vì điều này nhóm được gọi là '''Trường phái Merton'''. Những người đàn ông này đã sử dụng một sự tiếp cận [[toán học]]-[[logic]] nổi bật đối với các vấn đề [[triết học]]. Những ''nhà tính toán'' mấu chốt, những người viết các tác phẩm vào phần tư thứ hai của thế kỷ 14, là [[Thomas Bradwardine]], [[William Heytesbury]], [[Richard Swineshead]] và [[John Dumbleton]]. Những người này đã dựa vào các tác phẩm ban đầu của [[Walter Burley]] và [[Gerard xứ Brussels]] để viết các tác phẩm của mình.
== [[Khoa học]] ==
Những sự phát triển mà những người đàn ông này mang lại ban đầu chỉ thuần là toán học nhưng sau đó đã trở nên thích hợp đối với [[cơ khí]]. Họ đã sử dụng [[logic]] và [[vật lý]] của [[Aristotle]]. Họ cũng nghiên cứu và nỗ lực để xác định mọi tính chất [[vật chất]] và có thể quan sát được như [[hơi nóng]], [[lực]], [[màu sắc]] và [[ánh sáng]]. Aristotle đã tin rằng chỉ có [[độ dài]] và [[chuyển động]] có thể xác định được. Thế nhưng, nhóm Oxford Calculators đã sử dụng triết học của ông và chứng minh điều mà ông đã nghĩ là không chính xác bằng việc thể hiện rằng có thể tính toán những thứ như [[nhiệt độ]] và [[năng lượng]].<ref>Agutter, Paul S.; Wheatley, Denys N. (2008) "Thinking About Life"</ref> Họ đã phát triển công trình của [[al-Battini]] về [[lượng giác học]] và tác phẩm nổi tiếng nhất của họ là việc phát triển [[định lý tốc độ trung bình]] (mặc dù điều này được gắn cho công lao của [[Galileo Galilei]], hay còn được biết đến là "Định luật của các Vật thể Rơi".<ref>Gavroglu, Kostas; Renn, Jurgen (2007) "Positioning the History of Science"</ref> Mặc dù họ cố gắng để xác định những tính chất có thể quan sát này, mối quan tâm của họ lại nghiêng về [[triết học]] và các khía cạnh logic nhiều hơn là thế giới [[tự nhiên]]. Họ đã sử dụng những con số để phủ nhận về mặt triết học và chứng minh được lý do "tại sao" thứ gì đó hoạt động như nó đã từng và "làm sao" nó không chỉ hoạt động như nó đã từng.<ref>{{citechú bookthích sách|title=Thinking About Life|publisher=Springer|isbn=978-1-4020-8865-0|editor=Paul S. Agutter, and Denys N. Wheatley}}</ref>
 
Oxford Calculators đã phân biệt [[chuyển động học]] và [[động lực học]], làm nổi bật chuyển động học và nghiên cứu [[vận tốc tức thời]]. Họ là những người đầu tiên công thức hóa định lý tốc độ trung bình: ''Một [[vật thể]] di chuyển với [[vận tốc]] không đổi đi khoảng cách giống như một vận được [[gia tốc]] trong cùng một khoảng [[thời gian]] nếu như vận tốc của nó bằng một nửa vận tốc cuối cùng của vật thể được gia tốc''
 
[[Nhà vật lý]] toán học và [[nhà sử học]] khoa học [[Clifford Truesdell]] đã viết như thế này:<ref>Clifford Truesdell, ''Essays in The History of Mechanics'', (Springer-Verlag, New York, 1968)</ref>
{{blockquote|Những nguồn được xuất bản vào thời điểm hiện tại cho chúng ta thấy, vượt trên cả sự cạnh trang, rằng những tinh chất chuyển động học chủ yếu của các chuyển động được gia tốc đều, vẫn được gán cho Galileo bởi các văn bản vật lý, đã được phát hiện và chứng minh bởi các học giả ở trường đại học Merton... Về nguyên tắc, phẩm chất của các nhà vật lý [[Hy Lạp]] đã bị thay thế, chí ít là trong vấn đề chuyển động, bởi các phẩm chất số học đã thống trị [[khoa học phương Tây]] kể từ đó. Công trình đã lan rộng đến [[Pháp]], [[Ý]] và những phần khác của [[châu Âu]]. Gần như ngay lập tức, [[Giovanni di Casale]] và [[ Nicole Oresme]] đã tìm được cách biểu diễn các kết quả bằng các ký tự [[hình học]], giới thiệu sự kết nối giữa hình học và thế giới vật chất thứ đã trở thành một thói quen đặc trưng thứ hai của tư tưởng [[phương Tây]]}}
 
Trong tác phẩm ''[[Tractatus de proportionibus]]'' ([[1328]]), Bradwardine đã mở rộng lý thuyết về sự cân xứng của [[Eudoxus]] để thúc đẩy sự ra đời của khái niệm [[tăng trưởng theo cấp số nhân]], sau đó được phát triển bởi [[Jakob Bernoulli]] và [[Leonhard Euler]], với [[lãi ghép]] là một trường hợp đặc biệt. Những bàn luận về vận tốc trung bình phía trên yêu cầu khái niệm hiện đại của [[giới hạn (toán học)|giới hạn]], vì thế Bradwardine phải sử dụng những tranh luận này vào thời đại của mình. Nhà toán học và nhà sử học toán học [[ Carl Benjamin Boyer]] đã viết như sau: "Bradwardine đã phát triển lý thuyết của [[Boethius]] về tỷ lệ nhân đôi hay nhân ba, hay rộng hơn, là tỷ lệ mà chúng ta sẽ gọi là tỷ lệ "n-tuple"".<ref>{{citechú bookthích sách |author=Carl B. Boyer, [[Uta Merzbach|Uta C. Merzbach]]|title=A History of Mathematics|url=https://archive.org/details/AHistoryOfMathematics|publisher= |year= |pages= |isbn=}}</ref>
 
Boyer cũng viết rằng "tác phẩm của Bradwardine đã chứa đựng vài nền tảng của [[lượng giác]]". Tuy thế, "Bradwardine và những người đồng nghiệp tại Oxford chưa thực sự tạo ra sự đột phát cho khoa học hiện đại".<ref>{{citechú bookthích sách |author=Norman F. Cantor|title=In the Wake of the Plague: The Black Death and the World it Made
|url=https://archive.org/details/inwakeofplague00cant|url-access=registration|publisher= |year=2001 |page=[https://archive.org/details/inwakeofplague00cant/page/122 122] |isbn=}}</ref> Sự thiếu sót đáng chú ý nhất đó chính là [[đại số]].
== Chú thích ==
{{Reflisttham khảo}}
== Tham khảo ==
* Sylla, Edith (1999) "Oxford Calculators", in ''The Cambridge Dictionary of Philosophy''.
*Uta C. Merzbach and Carl B. Boyer (2011), ''A History of Mathematics", Third Edition, Hoboken, NJ: Wiley.
* Edith Sylla (1982), "The Oxford Calculators",in [[Norman Kretzmann]], [[Anthony Kenny]], and [[Jan Pinborg]], edd. ''The Cambridge History of Later Medieval Philosophy: From the Rediscovery of Aristotle to the Disintegration of Scholasticism, 1100-1600'', New York: Cambridge.
*{{citechú bookthích sách |last1= Boccaletti |first1=Dino| title = Galileo and the Equations of Motion| publisher = Springer | location = Heidelberg, New York| year=2016|doi = | isbn=978-3-319-20134-4}}
 
[[Thể loại:Lịch sử triết học]]
[[Thể loại:Lịch sử vật lý]]
[[Thể loại:Nhà toán học thế kỷ 14]]
[[Thể loại:Khoa học thế kỷ 14]]