Vectơ

Vật thể trong toán học biểu thị hướng và độ lớn (chiều dài)
(đổi hướng từ Vector)

Trong toán học, vật lý, và kỹ thuật, một vectơ (tiếng Anh: vector hay Hán-Việt: hướng lượng) là một đoạn thẳng có hướng. Đoạn thẳng này biểu thị phương, chiều, độ lớn (chiều dài của vectơ).

Ví dụ trong mặt phẳng cho hai điểm phân biệt A và B bất kì ta có thể xác định được vectơ được mô tả như hình vẽ.

Trong toán học cao cấp, một vectơ là một phần tử trong một không gian vectơ, được xác định bởi ba yếu tố: điểm đầu (hay điểm gốc), hướng (gồm phương và chiều) và độ lớn (hay độ dài).

Ví dụ, đoạn thẳng AB có điểm gốc là A, hướng từ A đến B được gọi là vectơ AB, ký hiệu là . Vectơ được ký hiệu là hoặc , , ,

Trong giải tích, một vectơ trong không gian Euclid Rn là một bộ n số thực (x1, x2,..., xn).

Có thể hình dung một vectơ trong không gian Rn là đoạn thẳng có hướng (thường vẽ theo hình mũi tên), đuôi ở gốc tọa độ 0, mũi ở điểm (x1, x2,..., xn).

Vectơ hướng từ A đến B

Các khái niệm cơ bảnSửa đổi

  • Độ lớn của vectơ   trong hình học được đo bằng độ dài đoạn thẳng AB, ký hiệu giống như ký hiệu giá trị tuyệt đối:   đọc là độ dài của vectơ AB
  • Vectơ đơn vị là vectơ có độ dài bằng 1, là vectơ quy ước để so sánh.
  • Ngoài ra, bạn cũng có thể dễ nhận thấy 1 tính chất cộng đơn giản khác của Vecto:   + |  | = |AB + CD|
  • Vectơ-không là vectơ đặc biệt có điểm đầu trùng với điểm cuối. Ký hiệu là   hoặc  
  • 2 vectơ cùng phương khi giá của chúng song song hoặc trùng nhau
  • 2 vectơ bằng nhau là 2 vectơ cùng hướng (phương song song, cùng chiều) và độ lớn bằng nhau. Véctơ   bằng véctơ   được ký hiệu là  .
  • 2 vectơ đối nhau là 2 vectơ ngược hướng (phương song song, ngược chiều) và độ lớn bằng nhau. Vectơ đối của véctơ    , ta có  
  • Vectơ tự do: vectơ có thể di chuyển tịnh tiến đến một điểm bất kì, thực chất là thay thế bởi một vectơ khác bằng với vectơ cũ
  • Vectơ buộc: vectơ có điểm đầu cố định, không di chuyển được. Trong vật lý, vectơ buộc được dùng để biểu thị các lực tác dụng vào điểm đặt lực.
  • Trong hệ tọa độ Descartes, vectơ   có điểm đầu đặt tại gốc hệ tọa độ thì có thể xác định hoàn toàn bằng tọa độ của điểm cuối của nó, là một bộ số thực sắp thứ tự   trong mặt phẳng và   trong không gian. Trong không-thời gian bốn chiều, tọa độ đó được xác định bằng   trong đó ctốc độ ánh sáng, tthời gian.

Phép toán trên vectơSửa đổi

 
Phép cộng vectơ bằng quy tắc hình bình hành (trái) và tam giác (phải)

Phép cộng hai vectơSửa đổi

Quy tắcSửa đổi

Phép cộng hai vectơ: tổng của hai vectơ    là một vectơ được xác định theo quy tắc:

  • Quy tắc 3 điểm: di chuyển vectơ   sao cho điểm đầu C của   trùng với điểm cuối B của  :  . Khi đó vectơ   có điểm gốc đặt tại điểm A, điểm cuối đặt tại D, chiều từ A đến D là vectơ tổng
  • Quy tắc hình bình hành: di chuyển vectơ   đến vị trí trùng điểm gốc A của vectơ  . Khi đó vectơ tổng có gốc đặt tại điểm A, có điểm cuối đặt tại góc đối diện trong hình bình hành tạo ra bởi hai vectơ thành phần   , chiều từ gốc A đến điểm cuối

Tính chấtSửa đổi

  • Tính chất giao hoán

 

  • Tính chất kết hợp

 

  • Tính chất của vectơ-không  
  • Với 3 điểm A, B, C, ta có:  
  • I là trung điểm đoạn thẳng AB  
  • G là trọng tâm    


Hiệu hai vectơSửa đổi

Ta có:    -   =   +(- )=.  +  

Quy tắc trừ: Với 3 điểm A, B, C, ta có  

Tích vectơ với một sốSửa đổi

Quy tắcSửa đổi

  • Phép nhân vectơ với một số: tích của vectơ   với một số thực   là một vectơ có gốc và phương trùng với gốc và phương của  , cùng chiều nếu   và ngược chiều nếu  , có độ dài bằng  

Tính chấtSửa đổi

  • Với hai vectơ bất kì, với mọi số h và k, ta có
    •   (
    •  
    •  
    •  

Trung điểm của đoạn thẳng và trọng tâm của tam giácSửa đổi

  • Nếu K là trung điểm của đoạn thẳng AB thì với mọi điểm M ta có  
  • Nếu G là trọng tâm của tam giác ABC thì với mọi điểm M ta có  

Điều kiện để hai vectơ cùng phươngSửa đổi

Điều kiện cần để hai vectơ      cùng phương là có một số k để  

Nếu    cùng hướng thì  

Nếu    ngược hướng thì  

Tích vô hướng của hai vectơSửa đổi

Quy tắcSửa đổi

  • Tích vô hướng () của hai vectơ ab nhân với cosin của góc α giữa hai vectơ đó, ký hiệu là  
 

Các tính chất của tích vô hướngSửa đổi

  • Tính chất giao hoán  
  • Tính chất phân phối  
  •  
  •  
  •  
  • 2 vecto vuông góc có tích vô hướng bằng 0

Một số tính chất mở rộngSửa đổi

  •  
  •  
  •  

Biểu thức tọa độ của tích vô hướngSửa đổi

Trong mặt phẳng:  

Trong không gian 3 chiều:  

Xem thêmSửa đổi

Tham khảoSửa đổi

  1. Nhà xuất bản giáo dục - Bộ giáo dục và đào tạo - Sách giáo khoa Hình học 10
  2. Nhà xuất bản giáo dục - Bộ giáo dục và đào tạo - Sách giáo khoa Hình học 10 Nâng cao

Liên kết ngoàiSửa đổi