Bó (toán học)

khái niệm toán học

Trong toán học, là một khái niệm cho phép mô tả thông tin gắn với các tập mở của một không gian tô pô (thí dụ như các hàm liên tục xác định trên các tập mở). Với mỗi bó, ta có thể gán một không gian étalé chứa lượng thông tin tương đương.

Định nghĩaSửa đổi

Tiền bóSửa đổi

Xét một không gian tôpô X và một phạm trù C. Thông thường Cphạm trù các tập hợp, phạm trù các nhóm, phạm trù các nhóm abelian hoặc phạm trù các vành giao hoán. Một tiền bó F trên X là một hàm tử với các giá trị trong C được cho bởi dữ liệu sau:

  • Với mỗi tập mở U của X, có một đối tượng F(U) trong C
  • Đối với mỗi cặp tập mở VU, có một cấu xạ tương ứng   trong phạm trù C.

Cấu xạ res V, U được gọi là cấu xạ thu hẹp. Nếu sF(U), thì thu hẹp của nó là resV,U(s) thường được ký hiệu là s|V giống như là sự thu hẹp của một hàm số. Các cấu xạ thu hẹp thỏa mãn:

  • Với mỗi tập mở U của X, cấu xạ thu hẹp resU,U: F(U) → F(U) là cấu xạ đồng nhất trên F(U).
  • Nếu chúng ta có ba tập mở WVU, thì cấu xạ hợp resW,V o resV,U bằng với resW,U.

Ta ký hiệu tiền bó F trên X .

Sửa đổi

Một là một tiền bó với các giá trị trong phạm trù tập hợp thỏa mãn hai tiên đề sau:

  1. (Tính cục bộ) Nếu (Ui) là một phủ mở của một tập mở U và nếu s,tF(U) sao cho s|Ui= t|Ui với mọi Ui, thì s = t.
  2. (Tính kết dính) Nếu (Ui) là một phủ mở của một tập mở U và nếu với mỗi i, tồn tại một nhát cắt siF(Ui) sao cho với mỗi cặp Ui, Uj, thu hẹp của sisj bằng nhau trên phần giao: si|UiUj = sj|UiUj, thì tồn tại một nhát cắt sF(U) sao cho s|Ui = si với mọi i.

Tiền bó dùng để định nghĩa bó cũng được gọi là tiền bó nền của bó đó.

Ví dụSửa đổi

  1. Trên một không gian tôpô  , ta có bó không gian véc tơ các hàm liên tục  . Với mọi tập mở  ,   là không gian véc tơ các hàm liên tục trên  .
  2. Trên một đa tạp vi phân  , ta có bó không gian véc tơ các hàm trơn  .
  3. Trên một diện Riemann  , ta có bó không gian véc tơ phức các hàm chỉnh hình  .
  4. Giả sử ta có một phân thớ véc tơ  . Thế thì các nhát cắt của   tạo thành một bó   trên  . Ứng với mỗi tập mở   ta có không gian véc tơ  , là không gian các nhát cắt của   trên  .

Cấu xạSửa đổi

Gọi FG là hai bó trên X với hệ số trong phạm trù C. Một cấu xạ   là một phép gán một cấu xạ   với mỗi tập mở U của X sao cho giản đồ sau giao hoán

 

Coi một bó như một hàm tử, thế thì một cấu xạ giữa các bó cũng chính là một phép biến đổi tự nhiên giữa các hàm tử tương ứng.

Với các cấu xạ được định nghĩa như trên, cùng với phép hợp tự nhiên, các bó tạo thành một phạm trù: phạm trù các bó.

Ta có thể chứng minh rằng một đơn cấu (đẳng cấu) bó thì cảm sinh các đơn cấu (đẳng cấu) trên mỗi tập mở   của  .

Tuy nhiên điều này không còn đúng cho các toàn cấu.

Ví dụ, xét bó các hàm trơn   và bó các dạng vi phân bậc nhất   trên một đa tạp trơn  . Phép vi phân   cho ta một toàn cấu bó. Thật vậy, xét một bó   và các cấu xạ   sao cho  , tức là với mọi  ,  . Xét một nhát cắt  . Ta có   với   đủ nhỏ để   (một tập   như vậy tồn tại theo bổ đề Poincaré). Do tính kết dính, ta kết luận rằng  . Suy ra  , suy ra   là một toàn cấu bó. Tuy nhiên   không phải lúc nào cũng là một toàn ánh (nó là một toàn ánh khi và chỉ khi  ), ví dụ ta có thể chọn  .

Phạm trù các bó trên một không gian tô pôSửa đổi

Các bó (với hệ số trong một phạm trù   nhất định) trên một không gian tô pô   cùng với các cấu xạ bó tạo thành phạm trù các  -bó trên không gian tô pô  .

ThớSửa đổi

Không gian thớ   của một bó   mô tả hành vi của bó   xung quanh một điểm xX, tổng quát hóa khái niệm mầm.

Thớ   được định nghĩa bởi

 

giới hạn trực tiếp được lấy trên mọi tập mở của X chứa x. Nói cách khác, một phần tử của thớ được cho bởi một nhát cắt trên một lân cận chứa x, và hai nhát cắt sẽ được cho là tương đương nếu chúng bằng nhau trên một lân cận đủ nhỏ của x.

Cấu xạ tự nhiên   gửi nhát cắt   thuộc   tới mầm của nó tại x.

Tính chấtSửa đổi

Tính chất của định lý đồng nhấtSửa đổi

Một tiền bó   được gọi là có tính chất của định lý đồng nhất nếu nó thỏa mãn tính chất sau

Giả sử   là một miền con (i.e. một tập con mở liên thông) của  ,    là hai nhát cắt trong    là một điểm thuộc   sao cho  . Thế thì  .

Nếu   là một không gian Hausdorff liên thông địa phương thì   thỏa mãn tính chất của định lý đồng nhất khi và chỉ khi không gian étalé tương ứng là một không gian Hausdorff.[1]

Bó các hàm chỉnh hình, bó các hàm phân hình trên một mặt Riemann và bó các nhát cắt song song trên một phân thớ véc-tơ (được trang bị một liên kết) đều là các bó thỏa mãn tính chất của định lý đồng nhất.

Bó ảnh xuôi và bó ảnh ngượcSửa đổi

[2]

Xem thêmSửa đổi

Ghi chúSửa đổi

  1. ^ Trần Minh Tiến (2020)
  2. ^ Nguyễn Mạnh Linh (2020)

Tham khảoSửa đổi