Khác biệt giữa các bản “0,999...”

sửa lại
n (→‎top: replaced: kí → ký using AWB)
(sửa lại)
[[Tập tinFile:999 Perspective.svg|300px|phảithumbnail|Con số kéo dài với vô hạn chữ số 9.]]
Trong [[toán học]], số [[số hữu tỉ|thập phân tuần hoàn]] '''0,999...''' hay còn được viết <math>\mbox{0,}\bar{9}; \mbox{0,}\dot{9}</math> hoặc <math> \mbox{0,(9)}\,\!</math> là một [[số thực]] bằng [[1 (số)|1]]. Nói cách khác: ký hiệu ''0,999...'' và ''1'' đều thể hiệu cùng một số thực. Điều này đã được nhiều giáo sư toán học trên thế giới công nhận và được giảng dạy trong nhiều [[sách giáo khoa]]<ref>{{chú thích sách |author=Alligood, Sauer, and Yorke |year=1996 |title= Giới thiệu về hệ thống thập phân |chapter=4.1 Cantor Sets |publisher=Springer |isbn=0-387-94677-2}}</ref><ref>{{chú thích sách |last=Apostol |first=Tom M. |year=1974 |title=Giải tích toán học|edition=2e |publisher=Addison-Wesley |isbn=0-201-00288-4}}</ref><ref>{{chú thích sách |author=Bartle, R.G. and D.R. Sherbert |year=1982 |title=Giới thiệu giải tích toán học|publisher=Wiley |isbn=0-471-05944-7}}</ref><ref>{{chú thích sách |last=Beals |first=Richard |title=Giải tích |year=2004 |publisher=Cambridge UP |isbn=0-521-60047-2}}</ref>. Nhiều cách [[chứng minh (toán học)|chứng minh]] khác nhau đã được trình bày, dựa vào nhiều phép tính toán trên các số thực, các kiến thức đã được công nhận và tùy theo mục đích của người đọc. Trong thực tế, số thực có thực có thể được đại diện bởi một dãy số thập phân vô hạn và sự thực này mới nhìn giống như một nghịch lý. Điều này có thể tránh được với nhiều hệ thống số hay cách biểu diễn số khác như ''vi phân'': một đại lượng biến thiên nhỏ vô cùng luôn chạy về 0 nhưng không bao giờ bằng 0, [[Số p-adic|số ''p-adic'']].