Đa thức Legendre

Trong toán học, các hàm Legendre là các hàm số thỏa mãn phương trình vi phân Legendre:

Phương trình vi phân này được đặt tên theo nhà toán học Pháp Adrien-Marie Legendre, và thường hay gặp trong vật lý học hay các ngành kỹ thuật. Đặc biệt, nó xuất hiện trong việc giải phương trình Laplace trong hệ tọa độ cầu.

Nghiệm của phương trình tồn tại khi |x| < 1. Tại x = ± 1 giá trị của nghiệm sẽ hữu hạn nếu nsố nguyên không âm, n = 0, 1, 2,.... Trong trường hợp này, các nghiệm tạo thành dãy đa thức của các đa thức trực giao gọi là đa thức Legendre.

Một đa thức Legendre thường được ký hiệu là Pn(x) và là một đa thức bậc n. Các đa thức này có thể được biểu diễn bằng công thức Rodrigues:

Ví dụSửa đổi

Một vài đa thức Legendre bậc nhỏ:

n  
0  
1  
2  
3  
4  
5  
6  

Đồ thị của các đa thức này (đến bậc n = 10) được vẽ bên dưới:

Tính chấtSửa đổi

Tính trực giaoSửa đổi

Các đa thức Legendre là trực giao với tích trong L2 trong khoảng −1 ≤ x ≤ 1:

 

với δmnhàm delta Kronecker, bằng 1 nếu m = n và 0 nếu mn.

Lý do của tính trực giao là phương trình vi phân Legendre có thể coi là một bài toán Sturm–Liouville

 

với các trị riêng λ tương ứng với n(n+1).

Tính đối xứngSửa đổi

Các đa thức Legendre thỏa mãn

 

Chuẩn hóaSửa đổi

Khi chuẩn hóa, giá trị của đa thức Legendre tại 1 là:

 

và, theo tính đối xứng ở trên, tại -1 là:

 

Tại 0:

 

nếu nsố nguyên lẻ.

Giá trị đạo hàm tại 1 là:

 

Đệ quySửa đổi

Đa thức Legendre thỏa mãn các liên hệ đệ quy:

 

 

 

Tham khảoSửa đổi

Liên kết ngoàiSửa đổi