Mùn hay đất mùn (humus) là sản phẩm hình thành trong đất do quá trình tích lũy và phân giải không hoàn toàn trong điều kiện yếm khí xác thực vật và các tồn dư sinh vật khác trong đất do các vi sinh vật trong đất phân giải. Thành phần của mùn gồm được đặc trưng bởi các hợp chất chính: axit humic, axit fulvic, axit ulmic và các muối của chúng, thường gọi là humin, fulvin hay ulvin. Hiểu theo nghĩa rộng nhất, mùn trong đất bao gồm cả mùn nhuyễn (mùn theo nghĩa hẹp) và mùn thô (chất hữu cơ trong đất).

Mùn có màu đen hoặc nâu sẫm đặc trưng và là sự tích tụ của cacbon hữu cơ. Ngoài ba tầng đất chính là (A) bề mặt/lớp đất mặt, (B) lớp đất dưới và (C) tầng nền, một số loại đất còn có tầng đất hữu cơ (O) ngay trên bề mặt. Đá gốc cứng (R) theo nghĩa chặt chẽ không phải là đất.

Đất mùn có nhiều chất dinh dưỡng giúp cải thiện chất lượng đất, trong đó quan trọng nhất là nitơ. Tỷ lệ cacbonnitơ (C:N) của mùn thường nằm trong khoảng từ 8 đến 15, với mức trung bình là khoảng 12.[1] Đất mùn cũng có ảnh hưởng đáng kể đến độ xốp (bulk density) của đất. Đất mùn vô định hình và thiếu “đặc điểm cấu trúc tế bào của thực vật, vi sinh vật hoặc động vật”.[2]

Mô tả sửa

Thực vật là vật liệu sơ cấp thiết yếu của quá trình mùn hóa. Đây là vật liệu thuộc về sinh quyển. Thành phần của mùn thay đổi tùy thuộc vào thành phần của vật liệu sơ cấp và các sản phẩm thứ cấp đến từ động vật và vi sinh vật. Tốc độ phân hủy của các hợp chất khác nhau sẽ ảnh hưởng đến thành phần của mùn.[3]

Rất khó để định nghĩa mùn một cách chính xác vì nó là chất rất phức tạp và chưa được hiểu một cách đầy đủ. Mùn khác với chất hữu cơ đang phân hủy trong đất (decomposing soil organic matter). Chất hữu cơ đang phân hủy trông thô ráp và còn thấy được dấu tích của thực vật hoặc động vật ban đầu. Trái lại, mùn ẩm đầy đủ có bề ngoài giống như thạch, tối đồng nhất, xốp và vô định hình; nó có thể phân hủy dần dần trong một số năm hoặc duy trì hàng nghìn năm.[4] Nó không có cấu trúc, hình dạng hoặc đặc tính xác định. Tuy nhiên, khi soi dưới kính hiển vi, có thể phát hiện trong nó dấu tích của thực vật, động hoặc vi sinh vật nhỏ bé đã bị phân hủy về mặt cơ học, nhưng không phải về mặt hóa học.[5] Điều này cho thấy ranh giới mơ hồ giữa mùn và chất hữu cơ trong đất. Dù khác biệt, mùn là một phần không thể thiếu của chất hữu cơ trong đất.[6]

Tổ chức CSIRO của Úc đưa ra mô tả về mùn trong ấn phẩm “Vật chất hữu cơ và đất”, họ mô tả mùn đã thành hình hoàn chỉnh về cơ bản là một “tập hợp phức hợp (polyglot) các phân tử rất lớn và phức tạp”. (Do đó, vật liệu này đã vượt ra khỏi ngoài phạm vi “hạt”).

(Những phân tử này) “được hình thành một phần từ lignin và các phân tử polyphenol khác của lá gốc, phần khác từ các phân tử tương tự được vi khuẩn tạo ra. Trong quá trình phân hủy, các phân tử polyphenol này biến đổi về mặt hóa học trở thành polyquinone để có thể liên kết với nhau tạo nên những phân tử rất lớn. Một bộ phận của các phân tử này được biến đổi theo cách mà để cho các phân tử protein, axit amin và đường amin có thể gắn vào các phân tử "bazơ" polyphenol này. Vì protein chứa cả nitơ và lưu huỳnh, sự gắn kết này mang lại cho mùn hàm lượng vừa phải hai chất dinh dưỡng cho cây quan trọng này.

Kỹ thuật các bon phóng xạ và các kỹ thuật xác định niên đại khác đã chỉ ra rằng nền polyphenol của mùn có thể rất già nhưng protein gắn kết với chúng lại trẻ hơn nhiều. Ví dụ, một nghiên cứu cho thấy tuổi trung bình của phần bazơ là 2560 năm trong khi tuổi trung bình của phần protein chỉ là 510 năm. Dường như vi khuẩn có khả năng tách phần protein ra khỏi các phân tử mùn dễ dàng hơn là phá vỡ chính các phân tử bazơ polyphenol. Khi protein bị loại bỏ, các protein trẻ hơn có thể thay vào vị trí của nó, hoặc protein trẻ hơn này có thể tự gắn vào phần khác của phân tử mùn." (thường là một liên kết chelation yếu).

Ấn phẩm CSIRO mô tả chức năng của mùn. “Chức năng hữu ích nhất của mùn nằm trong việc cải thiện cấu trúc đất và trong việc cung cấp một diện tích bề mặt rất lớn có khả năng giữ các nguyên tố dinh dưỡng cho đến khi cần cho cây." (Liên kết này rõ ràng cũng đủ mạnh để chống lại sự hòa tan các nguyên tố dinh dưỡng vào trong nước mưa, nhưng cũng đủ yếu để sẵn đáp ứng khi cần cho đời sống thực vật.)

Sự cô lập cacbon trong đất (Soil Carbon Sequestration) là một biến số không đổi của đất. Chỉ khi trở thành mùn đất phân tử ổn định và tồn tại lâu dài qua nhiều thế kỷ thì ta mới có thể coi nó là có ý nghĩa quan trọng trong việc loại bỏ tình trạng quá tải carbon dioxide hiện tại trong khí quyển.

Có rất ít dữ liệu về thành phần của mùn rừng vì đây là một hỗn hợp phức tạp gây nhiều khó khăn cho các nhà nghiên cứu trong việc phân tích. Các nhà nghiên cứu trong những năm 1940 và 1960 đã thử sử dụng phương pháp phân tách hóa học để phân tích các hợp chất thực vật và mùn trong đất rừng, nhưng việc này là không thể thực hiện được. Một số nghiên cứu xa hơn đã được thực hiện trong những năm gần đây, mặc dù nó vẫn là một lĩnh vực nghiên cứu còn nhiều việc để làm. [7] [8] [9]

Mùn hóa sửa

Vi sinh vật phân hủy phần lớn chất hữu cơ trong đất thành khoáng chất vô cơ mà rễ cây có thể hấp thụ được làm chất dinh dưỡng. Quá trình này được gọi là "khoáng hóa". Trong quá trình này, nitơ (chu trình nitơ) và các chất dinh dưỡng khác (chu trình dinh dưỡng) trong chất hữu cơ phân hủy được tái sử dụng. Tùy thuộc vào các điều kiện trong đó quá trình phân hủy diễn ra, một phần chất hữu cơ không bị khoáng hóa mà được chuyển hóa thông qua một quá trình gọi là "mùn hóa" (humification). Trước khi có các phương pháp phân tích hiện đại, những bằng chứng ban đầu đã khiến các nhà khoa học tin rằng quá trình mùn hóa đã dẫn đến sự kết hợp của các polyme hữu cơ có khả năng chống lại hoạt động của vi sinh vật.[10] Tuy nhiên, nghiên cứu gần đây đã chứng minh rằng vi sinh vật có khả năng tiêu hóa mùn.[11]

Quá trình mùn hóa có thể xảy ra một cách tự nhiên trong đất hoặc xảy ra một cách nhân tạo, như trong quá trình sản xuất phân trộn. Chất hữu cơ được mùn hóa nhờ sự kết hợp của nấm hoại sinh, vi khuẩn, và động vật như giun đất, tuyến trùng, động vật nguyên sinh và động vật chân đốt.[12] Xác thực vật, bao gồm cả những thứ mà động vật đã tiêu hóa và bài tiết, có chứa các hợp chất hữu cơ: đường, tinh bột, protein, carbohydrate, lignin, sáp, nhựaaxit hữu cơ. Sự phân hủy trong đất bắt đầu bằng sự phân hủy đường và tinh bột từ carbohydrate, chúng dễ dàng phân hủy khi các loài ăn mùn bã ban đầu xâm chiếm các cơ quan thực vật đã chết, trong khi celluloselignin còn lại phân hủy chậm hơn.[13]  Các protein đơn giản, axit hữu cơ, tinh bột và đường phân hủy nhanh chóng, trong khi protein thô, chất béo, sáp và nhựa vẫn tương đối không thay đổi trong thời gian dài hơn. Lignin, được chuyển hóa nhanh chóng bởi nấm mục trắng, [14] là một trong những tiền chất chính của mùn,[15] cùng với các sản phẩm phụ của hoạt động của vi sinh vật[16] và động vật[17]. Do đó, mùn được tạo ra bởi quá trình mùn hóa là hỗn hợp các hợp chất và hóa chất sinh học phức tạp được tạo ra nhờ nhiều loài thực vật, động vật hoặc vi sinh vật mang nhiều vai trò và lợi ích trong đất. Một số người cho rằng mùn tạo bởi giun đất (phân trùn quế) là loại phân hữu cơ tốt nhất.[18]

Sự ổn định sửa

Phần lớn mùn trong đa số các loại đất đều tồn tại hơn 100 năm chứ không bị phân hủy thành CO2 và có thể được coi là ổn định; loại chất hữu cơ này được bảo vệ khỏi sự phân hủy trước hoạt động của vi sinh vật hoặc enzyme vì nó được ẩn (bị giữ lại) bên trong tập hợp nhỏ của các hạt đất, hoặc được hấp thụ chặt hoặc tạo phức với đất sét.[19] Mùn không được bảo vệ theo cách này hầu hết sẽ bị phân hủy trong vòng 10 năm và có thể được coi là kém ổn định hơn. Đất mùn ổn định mang đến ít chất dinh dưỡng cho cây trồng trong đất nhưng nó giúp duy trì cấu trúc vật lý của đất.[20] Một dạng mùn rất ổn định được hình thành từ quá trình oxy hóa chậm (oxy hóa khử) của cacbon trong đất sau khi trộn than bột mịn vào lớp đất mặt. Quá trình này được suy đoán là có vai trò quan trọng trong việc hình thành lớp đất màu mỡ bất thường terra preta do Indio của rừng Amazon.[21]  Tuy nhiên, nghiên cứu gần đây [22] gợi ý rằng các phân tử hữu cơ phức tạp trong đất có thể kém ổn định hơn nhiều so với suy nghĩ trước đây: "các bằng chứng sẵn có không ủng hộ [giả thuyết về .ND] sự hình thành các 'chất mang tính mùn' có kích thước phân tử lớn và bền vững trong đất. Thay vào đó, chất hữu cơ trong đất là một chuỗi các hợp chất hữu cơ bị phân hủy dần dần."

Các tầng đất (horizons) sửa

Đất mùn có màu đen hoặc nâu sẫm đặc trưng và là chất hữu cơ do sự tích tụ cacbon hữu cơ. Các nhà khoa học về đất sử dụng các chữ cái in hoa O, A, B, C và E để ký hiệu các tầng đất chính và các chữ cái viết thường cho sự phân biệt các tầng này (lowercase letters for distinctions of these horizons???). Hầu hết các loại đất đều có ba tầng chính: tầng đất mặt (surface horizon - A), tầng đất dưới (tầng tích tụ (?) - subsoil - B) và tầng nền (tầng đá mẹ (?) - substratum -C). Một số loại có tầng hữu cơ (organic horizon - O) trên bề mặt, nhưng tầng này cũng có thể bị chôn vùi. Tầng chính (master horizon - E) được sử dụng cho các tầng đất dưới bề mặt đã bị mất đi đáng kể các khoáng chất (đất đã bị rửa trôi). Tầng đá gốc (bedrock) không phải là đất, được kí hiệu bằng chữ R.[23]

Lợi ích của chất hữu cơ và mùn trong đất sửa

Một số người nghĩ rằng tầm quan trọng của thứ đất mùn vốn ổn định về mặt hóa học nằm ở sự màu mỡ mà nó mang lại cho đất về mặt vật lý và hóa học,[24] mặc dù một số chuyên gia nông nghiệp tập trung nhiều hơn vào các đặc tính khác của nó, chẳng hạn như khả năng ngăn chặn bệnh tật.[25] Mùn giúp đất duy trì độ ẩm (moisture) [26] bằng cách tăng độ xốp vi mô,[27] và giúp hình thành cấu trúc đất tốt.[28] [29] Sự tích hợp oxy vào các tập hợp phân tử hữu cơ lớn tạo ra nhiều vị trí tích cực, tích điện âm liên kết với các ion( cation) tích điện dương của chất dinh dưỡng cho thực vật, giúp cho cây dễ dàng hấp thụ chúng [chất dinh dưỡng .ND] hơn thông qua con đường trao đổi ion.[30] Mùn cho phép các sinh vật trong đất ăn và sinh sản, và thường được mô tả như là "sinh lực" của đất.[31] [32]

Các loại mùn sửa

Mùn nhuyễn sửa

Là loại mùn mà ở đó các chất hữu cơ đã phân hủy thành các axit mùn (humic và fulvic) và các humin, cũng như các chất khó tiêu với cây trồng khác như tanin, lignin. Có hai loại mùn nhuyễn:

Mùn calci sửa

Là loại mùn nhuyễn được hình thành ở những nơi mà ở đó quá trình hình thành được thuận lợi về độ ẩm và nhiệt độ, pH trung bình, hàm lượng Ca2+ và Mg2+ trong đất khá phong phú.

Mùn dưới tán rừng sửa

Là loại mùn nhuyễn gần như loại hình mùn calci, nhưng được hình thành ở điều kiện không thuận lợi bằng: pH thấp (chỉ gần trung tính), hàm lượng Ca2+ và Mg2+ thấp. Loại hình mùn nhuyễn này thường thấy ở dưới tán rừng cây lá rộng hoặc cây hỗn giao lá rộng và lá kim.

Mùn thô sửa

Là loại mùn mà ở đó các vật thể hữu cơ mới bị phân giải một phần, thường được hình thành trong điều kiện đất chua, hàm lượng Ca2+ và Mg2+ trong đất thấp. Thường xuất hiện ở các vùng có khí hậu lạnh.

Mùn trung gian sửa

Là loại mùn trung gian giữa mùn nhuyễn và mùn thô. Loại mùn này phần nào có tính chất tương tự như lớp đất A0.

Than bùn sửa

Là một loại mùn mà ở đó các vật thể hữu cơ đã bị phân giải nhưng chưa hết, môi trường thường chứa nước, đồng thời môi trường đất thường rất chua, rất nghèo Ca2+ và Mg2+ làm cho các vật thể hữu cơ biến đổi không hoàn toàn, có màu đen, làm tơi xốp, đôi khi khô, hàm lượng cacbon rất cao.

Tham khảo sửa

  1. ^ Weil, Ray R.; Brady, Nyle C. (2017). The Nature and Properties of Soils (bằng tiếng Anh) (ấn bản 15). Columbus, Ohio: Pearson Education (xuất bản April 2017). tr. 536. ISBN 978-0-13-325448-8. LCCN 2016008568. OCLC 936004363.
  2. ^ Whitehead, D. C.; Tinsley, J. (1963). “The biochemistry of humus formation”. Journal of the Science of Food and Agriculture. 14 (12): 849–857. Bibcode:1963JSFA...14..849W. doi:10.1002/jsfa.2740141201.
  3. ^ Kögel-Knabner, Ingrid; Zech, Wolfgang; Hatcher, Patrick G. (1988). “Chemical composition of the organic matter in forest soils: The humus layer”. Zeitschrift für Pflanzenernährung und Bodenkunde (bằng tiếng Đức). 151 (5): 331–340. doi:10.1002/jpln.19881510512.
  4. ^ Di Giovanni, C.; Disnar, J. R.; Bichet, V.; Campy, M. (1998). “Sur la présence de matières organiques mésocénozoïques dans des humus actuels (bassin de Chaillexon, Doubs, France)”. Comptes Rendus de l'Académie des Sciences, Série IIA (bằng tiếng Pháp). 326 (8): 553–559. Bibcode:1998CRASE.326..553D. doi:10.1016/S1251-8050(98)80206-1.
  5. ^ Nicolas Bernier and Jean-François Ponge (1994). “Humus form dynamics during the sylvogenetic cycle in a mountain spruce forest” (PDF). Soil Biology and Biochemistry. 26 (2): 183–220. CiteSeerX 10.1.1.635.6402. doi:10.1016/0038-0717(94)90161-9.
  6. ^ “Humintech® | Definition of Soil Organic Matter & Humic Acids Based Products”. Bản gốc lưu trữ ngày 21 tháng 9 năm 2015. Truy cập ngày 5 tháng 4 năm 2009.
  7. ^ Waksman SA. (1936). Humus. Origin, Chemical Composition and Importance in Nature. New York, NY: Williams and Wilkins
  8. ^ Stevenson FJ. Humus Chemistry: Genesis, Composition, Reactions. (2nd). Wiley, 1994. ISBN 978-0-471-59474-1
  9. ^ Maier RM. Chapter 16 - Biogeochemical Cycling. Environmental Microbiology (3rd). Academic Press, 2015. pp 339-373. ISBN 9780123946263 doi:10.1016/B978-0-12-394626-3.00016-8
  10. ^ Weil, Ray R.; Brady, Nyle C. (2017). The Nature and Properties of Soils (bằng tiếng Anh) (ấn bản 15). Columbus, Ohio: Pearson Education (xuất bản April 2017). tr. 549. ISBN 978-0-13-325448-8. LCCN 2016008568. OCLC 936004363. It is now thought that humic substances in soil extracts do not represent the nature of most of the organic matter as it exists in soil.
  11. ^ Popkin, G. (2021). “A Soil-Science Revolution Upends Plans to Fight Climate Change”. Quanta magazine. Soil researchers have concluded that even the largest, most complex molecules can be quickly devoured by soil’s abundant and voracious microbes.
  12. ^ Soil biology
  13. ^ Berg, B.; McClaugherty, C. (2007). Plant Litter: Decomposition, Humus Formation, Carbon Sequestration (ấn bản 2). Springer. ISBN 978-3-540-74922-6.
  14. ^ Levin, L.; Forchiassin, F.; Ramos, A. M. (2002). “Copper induction of lignin-modifying enzymes in the white-rot fungus Trametes trogii. Mycologia. 94 (3): 377–383. doi:10.2307/3761771. JSTOR 3761771. PMID 21156508.
  15. ^ González-Pérez, M.; Vidal Torrado, P.; Colnago, L. A.; Martin-Neto, L.; Otero, X. L.; Milori, D. M. B. P.; Haenel Gomes, F. (2008). “13C NMR and FTIR spectroscopy characterization of humic acids in spodosols under tropical rain forest in southeastern Brazil”. Geoderma. 146 (3–4): 425–433. Bibcode:2008Geode.146..425G. doi:10.1016/j.geoderma.2008.06.018.
  16. ^ Knicker, H.; Almendros, G.; González-Vila, F. J.; Lüdemann, H. D.; Martin, F. (1995). “13C and 15N NMR analysis of some fungal melanins in comparison with soil organic matter”. Organic Geochemistry. 23 (11–12): 1023–1028. Bibcode:1995OrGeo..23.1023K. doi:10.1016/0146-6380(95)00094-1.
  17. ^ Muscoloa, A.; Bovalob, F.; Gionfriddob, F.; Nardi, S. (1999). “Earthworm humic matter produces auxin-like effects on Daucus carota cell growth and nitrate metabolism”. Soil Biology and Biochemistry. 31 (9): 1303–1311. doi:10.1016/S0038-0717(99)00049-8.
  18. ^ “Vermiculture/Vermicompost”. Agri.And.Nic.in. Port Blair: Department of Agriculture, Andaman & Nicobar Administration. 18 tháng 6 năm 2011. Bản gốc lưu trữ ngày 17 tháng 1 năm 2016. Truy cập ngày 17 tháng 4 năm 2009.
  19. ^ Dungait, J. A.; Hopkins, D. W.; Gregory, A. S.; Whitmore, A. P. (2012). “Soil organic matter turnover is governed by accessibility not recalcitrance” (PDF). Global Change Biology. 18 (6): 1781–1796. Bibcode:2012GCBio..18.1781D. doi:10.1111/j.1365-2486.2012.02665.x. Truy cập ngày 30 tháng 8 năm 2014.[liên kết hỏng]
  20. ^ Oades, J. M. (1984). “Soil organic matter and structural stability: Mechanisms and implications for management”. Plant and Soil. 76 (1–3): 319–337. doi:10.1007/BF02205590.
  21. ^ Lehmann, J.; Kern, D. C.; Glaser, B.; Woods, W. I. (2004). Amazonian Dark Earths: Origin, Properties, Management. Springer. ISBN 978-1-4020-1839-8.
  22. ^ Lehmann, Johannes (1 tháng 12 năm 2015). “The contentious nature of soil organic matter”. Nature. 528 (7580): 60–68. Bibcode:2015Natur.528...60L. doi:10.1038/nature16069. PMID 26595271. Truy cập ngày 30 tháng 7 năm 2021.
  23. ^ https://vungoi.vn/ly-thuyet/cac-tang-dat-12041.html
  24. ^ Hargitai, L. (1993). “The soil of organic matter content and humus quality in the maintenance of soil fertility and in environmental protection”. Landscape and Urban Planning. 27 (2–4): 161–167. doi:10.1016/0169-2046(93)90044-E.
  25. ^ Hoitink, H. A.; Fahy, P. C. (1986). “Basic for the control of soilborne plant pathogens with composts”. Annual Review of Phytopathology. 24: 93–114. doi:10.1146/annurev.py.24.090186.000521.
  26. ^ C.Michael Hogan. 2010. Abiotic factor. Encyclopedia of Earth. eds Emily Monosson and C. Cleveland. National Council for Science and the Environment Lưu trữ 8 tháng 6 2013 tại Wayback Machine. Washington DC
  27. ^ De Macedo, J. R.; Do Amaral, Meneguelli; Ottoni, T. B.; Araujo, Jorge Araújo; de Sousa Lima, J. (2002). “Estimation of field capacity and moisture retention based on regression analysis involving chemical and physical properties in Alfisols and Ultisols of the state of Rio de Janeiro”. Communications in Soil Science and Plant Analysis. 33 (13–14): 2037–2055. doi:10.1081/CSS-120005747.
  28. ^ Hempfling, R.; Schulten, H. R.; Horn, R. (1990). “Relevance of humus composition to the physical/mechanical stability of agricultural soils: a study by direct pyrolysis-mass spectrometry”. Journal of Analytical and Applied Pyrolysis. 17 (3): 275–281. doi:10.1016/0165-2370(90)85016-G.
  29. ^ Soil Development: Soil Properties Lưu trữ 28 tháng 11 2012 tại Wayback Machine
  30. ^ Szalay, A. (1964). “Cation exchange properties of humic acids and their importance in the geochemical enrichment of UO2++ and other cations”. Geochimica et Cosmochimica Acta. 28 (10): 1605–1614. Bibcode:1964GeCoA..28.1605S. doi:10.1016/0016-7037(64)90009-2.
  31. ^ Elo, S.; Maunuksela, L.; Salkinoja-Salonen, M.; Smolander, A.; Haahtela, K. (2006). “Humus bacteria of Norway spruce stands: plant growth promoting properties and birch, red fescue and alder colonizing capacity”. FEMS Microbiology Ecology. 31 (2): 143–152. doi:10.1111/j.1574-6941.2000.tb00679.x. PMID 10640667.
  32. ^ Vreeken-Buijs, M. J.; Hassink, J.; Brussaard, L. (1998). “Relationships of soil microarthropod biomass with organic matter and pore size distribution in soils under different land use”. Soil Biology and Biochemistry. 30: 97–106. doi:10.1016/S0038-0717(97)00064-3.

Liên kết ngoài sửa