Ước số chung lớn nhất

Trong toán học, ước số chung lớn nhất (ƯSCLN) hay ước chung lớn nhất (ƯCLN) của hai hay nhiều số nguyên là số nguyên dương lớn nhất là ước số chung của các số đó. Ví dụ, ước chung lớn nhất của 6 và 15 là 3 vì .

Trong tiếng Anh, ước chung lớn nhất gọi là greatest common divisor (gcd), greatest common factor (gcf),[1] highest common factor (hcf),[2] greatest common measure (gcm),[3] hay highest common divisor.[4]

Trong trường hợp tất cả số nguyên đều bằng 0 thì chúng không có ƯCLN vì khi đó mọi số tự nhiên khác không đều là ước chung của các số đó. Nếu trong các số đó có ít nhất 1 số bằng 0 và ít nhất 1 số khác 0 thì ƯCLN của chúng bằng ƯCLN của các số khác 0.

Tổng quanSửa đổi

Ký hiệuSửa đổi

Ước chung lớn nhất của a0, a1, a2,... an được ký hiệu là ƯCLN(a0, a1, a2,... an),

Ví dụSửa đổi

Tìm ước chung lớn nhất của 27 và 45?

Ta có:

  • Các ước của 27 là  .
  • Các ước của 45 là  .

Những số nằm trong cả hai danh sách được gọi là những ước chung của 27 và 45:

 

Trong đó số lớn nhất là 9. Vậy 9 là ước chung lớn nhất của 27 và 45. Viết UCLN(27,45)=9

Số nguyên tố cùng nhauSửa đổi

Các số được gọi là số nguyên tố cùng nhau nếu ước chung lớn nhất của chúng bằng 1. Chẳng hạn, 9 và 28 là hai số nguyên tố cùng nhau.

Ước chung lớn nhất được sử dụng để đưa một phân số về dạng phân số tối giản. Chẳng hạn, ƯCLN(42, 56)=14, do đó,

 

Các tính chấtSửa đổi

  • Mọi ước chung của các số là ước của ƯCLN của các só đó.
  • Với các số nguyên a0, a1, a2,... an, ƯCLN(a0, a1, a2,... an) có thể được định nghĩa tương đương như số nguyên dương d nhỏ nhất có dạng d =   trong đó xk là các số nguyên. Định lý này được gọi là đẳng thức Bézout. Các số xk có thể tính nhờ Giải thuật Euclid mở rộng.
  • ƯCLN(a, 0) =|a|, với mọi a ≠ 0, vì mọi số khác 0 bất kỳ là ước của 0, và ước lớn nhất của a là|a|. Đây là trường hợp cơ sở trong thuật toán Euclid.
  • Nếu a là ước của tích b·c, và ƯCLN(ab) = d, thì a/d là ước của c.
  • Nếu m là số nguyên dương, thì ƯCLN(m·a0m·a1, m·a2,...m·an) = m·ƯCLN(a0, a1, a2,... an).
  • Nếu m là số nguyên bất kỳ, thì ƯCLN(a + m·bb) = ƯCLN(ab). Nếu m ước chung (khác 0) của ab, thì UCLN(a/mb/m) = ƯCLN(ab)/m.
  • ƯCLN là một hàm có tính nhân theo nghĩa sau: nếu các số a1, a2,...,an là các số nguyên tố cùng nhau, thì ƯCLN(a1·a2·...anb) = ƯCLN(a1b)·ƯCLN (a2b)·...ƯCLN (anb).
  • ƯCLN là hàm giao hoán: ƯCLN(a, b) = ƯCLN(b, a).
  • ƯCLN là hàm kết hợp: ƯCLN(a,b,c)= ƯCLN(a, ƯCLN(b, c)) = ƯCLN(ƯCLN(a, b), c).
  • ƯCLN (ab) quan hệ chặt chẽ với BCNN(ab): ta có
ƯCLN(ab)·BCNN(ab) = a·b.
Công thức này thường được dùng để tính BCNN của 2 số. Dạng khác của mối quan hệ này là tính chất phân phối:
BCNN(a, ƯCLN(a0, a1, a2,... an)) = ƯCLN(BCNN(a, a0), BCNN(a, a1), BCNN(a,a2),...,BCNN(a,an)).
  • Nếu sử dụng định nghĩa ƯCLN(0, 0) = 0 và BCNN(0, 0) = 0 thì khi đó tập các số tự nhiên trở thành một dàn đầy đủ phân phối với ƯCLN.
  • Trong Hệ tọa độ Descartes, ƯCLN(ab) biểu diễn số các điểm với tọa độ nguyên trên đoạn thẳng nối các điểm (0, 0) và (ab), trừ chính điểm (0, 0).

Tính toánSửa đổi

ƯCLN của 2 hay nhiều số có thể tìm được bằng cách phân tích các số đó ra thừa số nguyên tố, chọn các thừa số nguyên tố chung của tất cả các số đó. Khi đó ƯCLN cần tìm là tích của các thừa số sau khi nâng lũy thừa bậc nhỏ nhất của mỗi thừa số.

VD: Để tìm ƯCLN(18,84), ta phân tích 18 = 2·32 và 84 = 22·3·7 và nhận xét rằng các thừa số chung với số mũ dương nhỏ nhất của hai số này là 2·3; do đó ƯCLN(18,84) = 6.

Nếu không có thừa số nguyên tố chung nào thì xem như ƯCLN của các số đó là 1 và các số đó được gọi là các số nguyên tố cùng nhau.

VD: 10 = 2·5 và 9=32 không có thừa số nguyên tố nào chung nên 9 và 10 là 2 số nguyên tố cùng nhau và ƯCLN(9,10) = 1

Trên thực tế phương pháp này chỉ dùng cho các số nhỏ. Việc phân tích các số lớn ra thừa số nguyên tố mất rất nhiều thời gian.

Để tìm ưcln của 2 số tự nhiên thì phương pháp hiệu quả là giải thuật Euclid dựa trên dãy liên tiếp các phép chia có dư.

Nếu ab là các số khác không, thì ước chung lớn nhất của ab có thể tính qua bội chung nhỏ nhất (BCNN) của ab:

 

Chú thíchSửa đổi

  1. ^ Kelley, W. Michael (2004), The Complete Idiot's Guide to Algebra, Penguin, tr. 142, ISBN 9781592571611 .
  2. ^ Jones, Allyn (1999), Whole Numbers, Decimals, Percentages and Fractions Year 7, Pascal Press, tr. 16, ISBN 9781864413786 .
  3. ^ Barlow, Peter; Peacock, George; Lardner, Dionysius; Airy, Sir George Biddell; Hamilton, H. P.; Levy, A.; De Morgan, Augustus; Mosley, Henry (1847), Encyclopaedia of Pure Mathematics, R. Griffin and Co., tr. 589 .
  4. ^ Hardy & Wright (1979, tr. 20)

Đọc thêmSửa đổi

Liên kết ngoàiSửa đổi