Trong toán học, chuyển vị liên hợp (conjugate transpose) của một ma trận phức cỡ là một ma trận thu được bằng cách chuyển vị và lấy liên hợp phức của từng hệ số trong ma trận (liên hợp phức của số phức , với hai số thực ). Chuyển vị liên hợp có kích cỡ và thường được ký hiệu là hay [1] hay ,[2] hoặc một ký hiệu rất thường gặp trong vật lý là . Nó còn được gọi là chuyển vị Hermite, theo tên của nhà toán học Pháp Charles Hermite, hoặc chỉ đơn giản là liên hợp (adjoint).

Đối với các ma trận thực, chuyển vị liên hợp chỉ đơn giản là chuyển vị, .

Định nghĩa

sửa

Chuyển vị liên hợp của một ma trận   cỡ   được định nghĩa chính tắc là:

 

 

 

 

 

(Eq.1)

trong đó chỉ số   ký hiệu cho hệ số thứ   trong ma trận, với   , và gạch ngang trên ký hiệu liên hợp phức vô hướng.

Định nghĩa trên còn có thể được viết dưới dạng

 

trong đó   ký hiệu cho chuyển vị và   ký hiệu cho ma trận với các số hạng được lấy liên hợp phức.

Một số tên gọi khác cho chuyển vị liên hợp của một ma trận bao gồm chuyển vị Hermite, ma trận liên hợp hay chuyển hợp. Chuyển vị liên hợp của ma trận   có thể được ký hiệu bởi một trong các cách sau:

  •  , thường được dùng trong đại số tuyến tính
  •  , thường được dùng trong đại số tuyến tính
  •   (đôi khi còn được đọc là A đao), thường được dùng trong cơ học lượng tử
  •  , mặc dù ký hiệu này thường được sử dụng hơn để chỉ giả nghịch đảo Moore–Penrose

Trong một số ngữ cảnh,   ký hiệu cho ma trận chỉ với các hệ số được liên hợp phức và không có chuyển vị.

Ví dụ

sửa

Giả sử chúng ta muốn tính toán chuyển vị liên hợp của ma trận   sau.

 

Đầu tiên ta chuyển vị ma trận:

 

Sau đó ta lấy liên hợp từng hệ số của ma trận:

 

Một số liên hệ cơ bản

sửa

Một ma trận vuông   với các hệ số   được gọi là

  • Hermite hay tự liên hợp nếu  ; tức là  .
  • Hermite chéo hay phản hermite nếu  ; tức là  .
  • Chuẩn tắc nếu  .
  • Unita nếu  , hay  , hay  .

Ngay cả nếu   không là ma trận vuông, hai ma trận    đều là hermite và chính là các ma trận nửa xác định dương.

Khái niệm a trận chuyển vị "liên hợp"   không được nhầm lẫn với ma trận phụ hợp (adjugate),  , đôi khi cũng được gọi là adjoint.

Chuyển vị liên hợp   của ma trận   với các hệ số thực đơn giản về chuyển vị   của  , bởi liên hợp của một số thực là chính nó.

Đặt vấn đề

sửa

Chuyển vị liên hợp được nảy sinh từ cách mà các số phức có thể được biểu diễn hữu ích bằng các ma trận thực  , thỏa mãn các phép toán cộng và nhân:

 

Điều này nghĩa là, ký hiệu mỗi số phức   bằng một ma trận thực   biểu diễn biến đổi tuyến tính trên sơ đồ Argand (được coi là không gian vectơ thực  ), chịu ảnh hưởng của phép nhân phức với   trên  .

Do đó, một ma trận phức   cũng được biểu diễn hiệu quả bởi một ma trận   gồm các số thực. Chuyển vị liên hợp do đó được nảy sinh một cách tự nhiên từ kết quả của việc chuyển vị một ma trận như vậy—khi được xem lại là một ma trận   gồm các số phức.

Tính chất của chuyển vị liên hợp

sửa
  •   đối với hai ma trận phức bất kỳ    cùng số chiều.
  •   với một số phức   bất kỳ và một ma trận   cỡ   bất kỳ.
  •   với một ma trận   cỡ   bất kỳ và một ma trận   cỡ   bất kỳ. Chú ý rằng thứ tự của các thừa số bị đảo ngược.[1]
  •   đối với một ma trận   cỡ  , một cách tương đương chuyển vị Hermite là một đối hợp.
  • Nếu   là một ma trận vuông thì   trong đó  định thức của   .
  • Nếu   là một ma trận vuông thì   trong đó  vết của  .
  •  khả nghịch khi và chỉ khi   khả nghịch, và trong trường hợp đó  .
  • Các giá trị riêng của   là liên hợp phức của các giá trị riêng của  .
  •   với bất kỳ một ma trận   cỡ  , một vectơ   và một vectơ  . Ở đây   ký hiệu cho tích trong phức tiêu chuẩn trên   và tương tự cho  .

Tổng quát hóa

sửa

Tính chất cuối cùng bên trên cho thấy rằng nếu ta coi rằng   là một biến đổi tuyến tính từ không gian Hilbert   vào   thì ma trận   tương ứng với toán tử liên hợp của  . Khái niệm toán tử liên hợp giữa các không gian Hilbert do đó có thể được xem là tổng quát hóa của khái niệm chuyển vị liên hợp của các ma trận đối với một cơ sở trực chuẩn.

Còn có một cách tổng quát hóa khác: giả sử   là một ánh xạ tuyến tính từ một không gian vectơ   vào một không gian khác,   thì ánh xạ tuyến tính liên hợp phứcánh xạ tuyến tính chuyển vị được xác định, và do đó ta có thể lấy chuyển vị liên hợp của   là liên hợp phức của ánh xạ chuyển vị của  . Nó ánh xạ đối ngẫu liên hợp của   vào đối ngẫu liên hợp của  .

Xem thêm

sửa

Tham khảo

sửa
  1. ^ a b Weisstein, Eric W. “Conjugate Transpose”. mathworld.wolfram.com (bằng tiếng Anh). Truy cập ngày 8 tháng 9 năm 2020.
  2. ^ H. W. Turnbull, A. C. Aitken, "An Introduction to the Theory of Canonical Matrices," 1932.

Liên kết ngoài

sửa